Metamath Proof Explorer


Theorem lcmfunsnlem2

Description: Lemma for lcmfunsn and lcmfunsnlem (Induction step part 2). (Contributed by AV, 26-Aug-2020)

Ref Expression
Assertion lcmfunsnlem2 ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚𝑦 𝑚𝑘 → ( lcm𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) ) ) → ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) )

Proof

Step Hyp Ref Expression
1 nfv 𝑛 ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin )
2 nfv 𝑛𝑘 ∈ ℤ ( ∀ 𝑚𝑦 𝑚𝑘 → ( lcm𝑦 ) ∥ 𝑘 )
3 nfra1 𝑛𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 )
4 2 3 nfan 𝑛 ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚𝑦 𝑚𝑘 → ( lcm𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) )
5 1 4 nfan 𝑛 ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚𝑦 𝑚𝑘 → ( lcm𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) ) )
6 0z 0 ∈ ℤ
7 eqoreldif ( 0 ∈ ℤ → ( 𝑛 ∈ ℤ ↔ ( 𝑛 = 0 ∨ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ) )
8 6 7 ax-mp ( 𝑛 ∈ ℤ ↔ ( 𝑛 = 0 ∨ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) )
9 simp2 ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → 𝑦 ⊆ ℤ )
10 snssi ( 𝑧 ∈ ℤ → { 𝑧 } ⊆ ℤ )
11 10 3ad2ant1 ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → { 𝑧 } ⊆ ℤ )
12 9 11 unssd ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ )
13 snssi ( 0 ∈ ℤ → { 0 } ⊆ ℤ )
14 6 13 mp1i ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → { 0 } ⊆ ℤ )
15 12 14 unssd ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 0 } ) ⊆ ℤ )
16 c0ex 0 ∈ V
17 16 snid 0 ∈ { 0 }
18 17 olci ( 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ∨ 0 ∈ { 0 } )
19 elun ( 0 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 0 } ) ↔ ( 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ∨ 0 ∈ { 0 } ) )
20 18 19 mpbir 0 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 0 } )
21 lcmf0val ( ( ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 0 } ) ⊆ ℤ ∧ 0 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 0 } ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 0 } ) ) = 0 )
22 15 20 21 sylancl ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 0 } ) ) = 0 )
23 22 adantr ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 = 0 ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 0 } ) ) = 0 )
24 sneq ( 𝑛 = 0 → { 𝑛 } = { 0 } )
25 24 adantl ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 = 0 ) → { 𝑛 } = { 0 } )
26 25 uneq2d ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 = 0 ) → ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) = ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 0 } ) )
27 26 fveq2d ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 = 0 ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 0 } ) ) )
28 oveq2 ( 𝑛 = 0 → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 0 ) )
29 snfi { 𝑧 } ∈ Fin
30 unfi ( ( 𝑦 ∈ Fin ∧ { 𝑧 } ∈ Fin ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin )
31 29 30 mpan2 ( 𝑦 ∈ Fin → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin )
32 31 3ad2ant3 ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin )
33 lcmfcl ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℕ0 )
34 12 32 33 syl2anc ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℕ0 )
35 34 nn0zd ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ )
36 lcm0val ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 0 ) = 0 )
37 35 36 syl ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 0 ) = 0 )
38 28 37 sylan9eqr ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 = 0 ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) = 0 )
39 23 27 38 3eqtr4d ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 = 0 ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) )
40 39 ex ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( 𝑛 = 0 → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) )
41 40 adantr ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚𝑦 𝑚𝑘 → ( lcm𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) ) ) → ( 𝑛 = 0 → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) )
42 41 com12 ( 𝑛 = 0 → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚𝑦 𝑚𝑘 → ( lcm𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) )
43 9 adantl ( ( ( 0 ∈ 𝑦𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → 𝑦 ⊆ ℤ )
44 11 adantl ( ( ( 0 ∈ 𝑦𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → { 𝑧 } ⊆ ℤ )
45 43 44 unssd ( ( ( 0 ∈ 𝑦𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ )
46 elun1 ( 0 ∈ 𝑦 → 0 ∈ ( 𝑦 ∪ { 𝑧 } ) )
47 46 ad2antrr ( ( ( 0 ∈ 𝑦𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → 0 ∈ ( 𝑦 ∪ { 𝑧 } ) )
48 lcmf0val ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = 0 )
49 45 47 48 syl2anc ( ( ( 0 ∈ 𝑦𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = 0 )
50 49 oveq2d ( ( ( 0 ∈ 𝑦𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( 𝑛 lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( 𝑛 lcm 0 ) )
51 eldifi ( 𝑛 ∈ ( ℤ ∖ { 0 } ) → 𝑛 ∈ ℤ )
52 lcm0val ( 𝑛 ∈ ℤ → ( 𝑛 lcm 0 ) = 0 )
53 51 52 syl ( 𝑛 ∈ ( ℤ ∖ { 0 } ) → ( 𝑛 lcm 0 ) = 0 )
54 53 ad2antlr ( ( ( 0 ∈ 𝑦𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( 𝑛 lcm 0 ) = 0 )
55 50 54 eqtrd ( ( ( 0 ∈ 𝑦𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( 𝑛 lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) = 0 )
56 simp3 ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → 𝑦 ∈ Fin )
57 56 29 30 sylancl ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin )
58 12 57 33 syl2anc ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℕ0 )
59 58 nn0zd ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ )
60 51 adantl ( ( 0 ∈ 𝑦𝑛 ∈ ( ℤ ∖ { 0 } ) ) → 𝑛 ∈ ℤ )
61 lcmcom ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) = ( 𝑛 lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) )
62 59 60 61 syl2anr ( ( ( 0 ∈ 𝑦𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) = ( 𝑛 lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) )
63 12 adantl ( ( ( 0 ∈ 𝑦𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ )
64 51 snssd ( 𝑛 ∈ ( ℤ ∖ { 0 } ) → { 𝑛 } ⊆ ℤ )
65 64 ad2antlr ( ( ( 0 ∈ 𝑦𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → { 𝑛 } ⊆ ℤ )
66 63 65 unssd ( ( ( 0 ∈ 𝑦𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ )
67 46 orcd ( 0 ∈ 𝑦 → ( 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ∨ 0 ∈ { 𝑛 } ) )
68 elun ( 0 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ↔ ( 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ∨ 0 ∈ { 𝑛 } ) )
69 67 68 sylibr ( 0 ∈ 𝑦 → 0 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) )
70 69 ad2antrr ( ( ( 0 ∈ 𝑦𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → 0 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) )
71 lcmf0val ( ( ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ ∧ 0 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = 0 )
72 66 70 71 syl2anc ( ( ( 0 ∈ 𝑦𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = 0 )
73 55 62 72 3eqtr4rd ( ( ( 0 ∈ 𝑦𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) )
74 73 a1d ( ( ( 0 ∈ 𝑦𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚𝑦 𝑚𝑘 → ( lcm𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) )
75 74 expimpd ( ( 0 ∈ 𝑦𝑛 ∈ ( ℤ ∖ { 0 } ) ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚𝑦 𝑚𝑘 → ( lcm𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) )
76 75 ex ( 0 ∈ 𝑦 → ( 𝑛 ∈ ( ℤ ∖ { 0 } ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚𝑦 𝑚𝑘 → ( lcm𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) )
77 elsng ( 0 ∈ ℤ → ( 0 ∈ { 𝑧 } ↔ 0 = 𝑧 ) )
78 eqcom ( 0 = 𝑧𝑧 = 0 )
79 77 78 bitrdi ( 0 ∈ ℤ → ( 0 ∈ { 𝑧 } ↔ 𝑧 = 0 ) )
80 6 79 ax-mp ( 0 ∈ { 𝑧 } ↔ 𝑧 = 0 )
81 80 biimpri ( 𝑧 = 0 → 0 ∈ { 𝑧 } )
82 81 ad2antrr ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → 0 ∈ { 𝑧 } )
83 82 olcd ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( 0 ∈ 𝑦 ∨ 0 ∈ { 𝑧 } ) )
84 elun ( 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ↔ ( 0 ∈ 𝑦 ∨ 0 ∈ { 𝑧 } ) )
85 83 84 sylibr ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → 0 ∈ ( 𝑦 ∪ { 𝑧 } ) )
86 12 85 48 syl2an2 ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = 0 )
87 86 oveq2d ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( 𝑛 lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( 𝑛 lcm 0 ) )
88 51 ad2antlr ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → 𝑛 ∈ ℤ )
89 88 52 syl ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( 𝑛 lcm 0 ) = 0 )
90 87 89 eqtrd ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( 𝑛 lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) = 0 )
91 59 88 61 syl2an2 ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) = ( 𝑛 lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) )
92 12 adantl ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ )
93 64 ad2antlr ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → { 𝑛 } ⊆ ℤ )
94 92 93 unssd ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ )
95 sneq ( 𝑧 = 0 → { 𝑧 } = { 0 } )
96 17 95 eleqtrrid ( 𝑧 = 0 → 0 ∈ { 𝑧 } )
97 96 ad2antrr ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → 0 ∈ { 𝑧 } )
98 97 olcd ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( 0 ∈ 𝑦 ∨ 0 ∈ { 𝑧 } ) )
99 98 84 sylibr ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → 0 ∈ ( 𝑦 ∪ { 𝑧 } ) )
100 99 orcd ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ∨ 0 ∈ { 𝑛 } ) )
101 100 68 sylibr ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → 0 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) )
102 94 101 71 syl2anc ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = 0 )
103 90 91 102 3eqtr4rd ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) )
104 103 a1d ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚𝑦 𝑚𝑘 → ( lcm𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) )
105 104 expimpd ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚𝑦 𝑚𝑘 → ( lcm𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) )
106 105 ex ( 𝑧 = 0 → ( 𝑛 ∈ ( ℤ ∖ { 0 } ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚𝑦 𝑚𝑘 → ( lcm𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) )
107 ioran ( ¬ ( 0 ∈ 𝑦𝑧 = 0 ) ↔ ( ¬ 0 ∈ 𝑦 ∧ ¬ 𝑧 = 0 ) )
108 df-nel ( 0 ∉ 𝑦 ↔ ¬ 0 ∈ 𝑦 )
109 df-ne ( 𝑧 ≠ 0 ↔ ¬ 𝑧 = 0 )
110 108 109 anbi12i ( ( 0 ∉ 𝑦𝑧 ≠ 0 ) ↔ ( ¬ 0 ∈ 𝑦 ∧ ¬ 𝑧 = 0 ) )
111 107 110 bitr4i ( ¬ ( 0 ∈ 𝑦𝑧 = 0 ) ↔ ( 0 ∉ 𝑦𝑧 ≠ 0 ) )
112 eldif ( 𝑛 ∈ ( ℤ ∖ { 0 } ) ↔ ( 𝑛 ∈ ℤ ∧ ¬ 𝑛 ∈ { 0 } ) )
113 velsn ( 𝑛 ∈ { 0 } ↔ 𝑛 = 0 )
114 113 bicomi ( 𝑛 = 0 ↔ 𝑛 ∈ { 0 } )
115 114 necon3abii ( 𝑛 ≠ 0 ↔ ¬ 𝑛 ∈ { 0 } )
116 lcmfunsnlem2lem2 ( ( ( 0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚𝑦 𝑚𝑘 → ( lcm𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) ) ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) )
117 116 exp520 ( 0 ∉ 𝑦 → ( 𝑧 ≠ 0 → ( 𝑛 ≠ 0 → ( 𝑛 ∈ ℤ → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚𝑦 𝑚𝑘 → ( lcm𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) ) )
118 117 imp ( ( 0 ∉ 𝑦𝑧 ≠ 0 ) → ( 𝑛 ≠ 0 → ( 𝑛 ∈ ℤ → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚𝑦 𝑚𝑘 → ( lcm𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) )
119 115 118 syl5bir ( ( 0 ∉ 𝑦𝑧 ≠ 0 ) → ( ¬ 𝑛 ∈ { 0 } → ( 𝑛 ∈ ℤ → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚𝑦 𝑚𝑘 → ( lcm𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) )
120 119 impcomd ( ( 0 ∉ 𝑦𝑧 ≠ 0 ) → ( ( 𝑛 ∈ ℤ ∧ ¬ 𝑛 ∈ { 0 } ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚𝑦 𝑚𝑘 → ( lcm𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) )
121 112 120 syl5bi ( ( 0 ∉ 𝑦𝑧 ≠ 0 ) → ( 𝑛 ∈ ( ℤ ∖ { 0 } ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚𝑦 𝑚𝑘 → ( lcm𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) )
122 111 121 sylbi ( ¬ ( 0 ∈ 𝑦𝑧 = 0 ) → ( 𝑛 ∈ ( ℤ ∖ { 0 } ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚𝑦 𝑚𝑘 → ( lcm𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) )
123 76 106 122 ecase3 ( 𝑛 ∈ ( ℤ ∖ { 0 } ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚𝑦 𝑚𝑘 → ( lcm𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) )
124 42 123 jaoi ( ( 𝑛 = 0 ∨ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚𝑦 𝑚𝑘 → ( lcm𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) )
125 8 124 sylbi ( 𝑛 ∈ ℤ → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚𝑦 𝑚𝑘 → ( lcm𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) )
126 125 com12 ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚𝑦 𝑚𝑘 → ( lcm𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) ) ) → ( 𝑛 ∈ ℤ → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) )
127 5 126 ralrimi ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚𝑦 𝑚𝑘 → ( lcm𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) ) ) → ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) )