Step |
Hyp |
Ref |
Expression |
1 |
|
nfv |
⊢ Ⅎ 𝑛 ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) |
2 |
|
nfv |
⊢ Ⅎ 𝑛 ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) |
3 |
|
nfra1 |
⊢ Ⅎ 𝑛 ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) |
4 |
2 3
|
nfan |
⊢ Ⅎ 𝑛 ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) |
5 |
1 4
|
nfan |
⊢ Ⅎ 𝑛 ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) |
6 |
|
0z |
⊢ 0 ∈ ℤ |
7 |
|
eqoreldif |
⊢ ( 0 ∈ ℤ → ( 𝑛 ∈ ℤ ↔ ( 𝑛 = 0 ∨ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ) ) |
8 |
6 7
|
ax-mp |
⊢ ( 𝑛 ∈ ℤ ↔ ( 𝑛 = 0 ∨ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ) |
9 |
|
simp2 |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → 𝑦 ⊆ ℤ ) |
10 |
|
snssi |
⊢ ( 𝑧 ∈ ℤ → { 𝑧 } ⊆ ℤ ) |
11 |
10
|
3ad2ant1 |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → { 𝑧 } ⊆ ℤ ) |
12 |
9 11
|
unssd |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ) |
13 |
|
snssi |
⊢ ( 0 ∈ ℤ → { 0 } ⊆ ℤ ) |
14 |
6 13
|
mp1i |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → { 0 } ⊆ ℤ ) |
15 |
12 14
|
unssd |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 0 } ) ⊆ ℤ ) |
16 |
|
c0ex |
⊢ 0 ∈ V |
17 |
16
|
snid |
⊢ 0 ∈ { 0 } |
18 |
17
|
olci |
⊢ ( 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ∨ 0 ∈ { 0 } ) |
19 |
|
elun |
⊢ ( 0 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 0 } ) ↔ ( 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ∨ 0 ∈ { 0 } ) ) |
20 |
18 19
|
mpbir |
⊢ 0 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 0 } ) |
21 |
|
lcmf0val |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 0 } ) ⊆ ℤ ∧ 0 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 0 } ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 0 } ) ) = 0 ) |
22 |
15 20 21
|
sylancl |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 0 } ) ) = 0 ) |
23 |
22
|
adantr |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 = 0 ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 0 } ) ) = 0 ) |
24 |
|
sneq |
⊢ ( 𝑛 = 0 → { 𝑛 } = { 0 } ) |
25 |
24
|
adantl |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 = 0 ) → { 𝑛 } = { 0 } ) |
26 |
25
|
uneq2d |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 = 0 ) → ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) = ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 0 } ) ) |
27 |
26
|
fveq2d |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 = 0 ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 0 } ) ) ) |
28 |
|
oveq2 |
⊢ ( 𝑛 = 0 → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 0 ) ) |
29 |
|
snfi |
⊢ { 𝑧 } ∈ Fin |
30 |
|
unfi |
⊢ ( ( 𝑦 ∈ Fin ∧ { 𝑧 } ∈ Fin ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
31 |
29 30
|
mpan2 |
⊢ ( 𝑦 ∈ Fin → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
32 |
31
|
3ad2ant3 |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
33 |
|
lcmfcl |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℕ0 ) |
34 |
12 32 33
|
syl2anc |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℕ0 ) |
35 |
34
|
nn0zd |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ ) |
36 |
|
lcm0val |
⊢ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 0 ) = 0 ) |
37 |
35 36
|
syl |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 0 ) = 0 ) |
38 |
28 37
|
sylan9eqr |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 = 0 ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) = 0 ) |
39 |
23 27 38
|
3eqtr4d |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 = 0 ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) |
40 |
39
|
ex |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( 𝑛 = 0 → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
41 |
40
|
adantr |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( 𝑛 = 0 → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
42 |
41
|
com12 |
⊢ ( 𝑛 = 0 → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
43 |
9
|
adantl |
⊢ ( ( ( 0 ∈ 𝑦 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → 𝑦 ⊆ ℤ ) |
44 |
11
|
adantl |
⊢ ( ( ( 0 ∈ 𝑦 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → { 𝑧 } ⊆ ℤ ) |
45 |
43 44
|
unssd |
⊢ ( ( ( 0 ∈ 𝑦 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ) |
46 |
|
elun1 |
⊢ ( 0 ∈ 𝑦 → 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ) |
47 |
46
|
ad2antrr |
⊢ ( ( ( 0 ∈ 𝑦 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ) |
48 |
|
lcmf0val |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = 0 ) |
49 |
45 47 48
|
syl2anc |
⊢ ( ( ( 0 ∈ 𝑦 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = 0 ) |
50 |
49
|
oveq2d |
⊢ ( ( ( 0 ∈ 𝑦 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( 𝑛 lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( 𝑛 lcm 0 ) ) |
51 |
|
eldifi |
⊢ ( 𝑛 ∈ ( ℤ ∖ { 0 } ) → 𝑛 ∈ ℤ ) |
52 |
|
lcm0val |
⊢ ( 𝑛 ∈ ℤ → ( 𝑛 lcm 0 ) = 0 ) |
53 |
51 52
|
syl |
⊢ ( 𝑛 ∈ ( ℤ ∖ { 0 } ) → ( 𝑛 lcm 0 ) = 0 ) |
54 |
53
|
ad2antlr |
⊢ ( ( ( 0 ∈ 𝑦 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( 𝑛 lcm 0 ) = 0 ) |
55 |
50 54
|
eqtrd |
⊢ ( ( ( 0 ∈ 𝑦 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( 𝑛 lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) = 0 ) |
56 |
|
simp3 |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → 𝑦 ∈ Fin ) |
57 |
56 29 30
|
sylancl |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
58 |
12 57 33
|
syl2anc |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℕ0 ) |
59 |
58
|
nn0zd |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ ) |
60 |
51
|
adantl |
⊢ ( ( 0 ∈ 𝑦 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) → 𝑛 ∈ ℤ ) |
61 |
|
lcmcom |
⊢ ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) = ( 𝑛 lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
62 |
59 60 61
|
syl2anr |
⊢ ( ( ( 0 ∈ 𝑦 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) = ( 𝑛 lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
63 |
12
|
adantl |
⊢ ( ( ( 0 ∈ 𝑦 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ) |
64 |
51
|
snssd |
⊢ ( 𝑛 ∈ ( ℤ ∖ { 0 } ) → { 𝑛 } ⊆ ℤ ) |
65 |
64
|
ad2antlr |
⊢ ( ( ( 0 ∈ 𝑦 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → { 𝑛 } ⊆ ℤ ) |
66 |
63 65
|
unssd |
⊢ ( ( ( 0 ∈ 𝑦 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ ) |
67 |
46
|
orcd |
⊢ ( 0 ∈ 𝑦 → ( 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ∨ 0 ∈ { 𝑛 } ) ) |
68 |
|
elun |
⊢ ( 0 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ↔ ( 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ∨ 0 ∈ { 𝑛 } ) ) |
69 |
67 68
|
sylibr |
⊢ ( 0 ∈ 𝑦 → 0 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) |
70 |
69
|
ad2antrr |
⊢ ( ( ( 0 ∈ 𝑦 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → 0 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) |
71 |
|
lcmf0val |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ ∧ 0 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = 0 ) |
72 |
66 70 71
|
syl2anc |
⊢ ( ( ( 0 ∈ 𝑦 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = 0 ) |
73 |
55 62 72
|
3eqtr4rd |
⊢ ( ( ( 0 ∈ 𝑦 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) |
74 |
73
|
a1d |
⊢ ( ( ( 0 ∈ 𝑦 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
75 |
74
|
expimpd |
⊢ ( ( 0 ∈ 𝑦 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
76 |
75
|
ex |
⊢ ( 0 ∈ 𝑦 → ( 𝑛 ∈ ( ℤ ∖ { 0 } ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) |
77 |
|
elsng |
⊢ ( 0 ∈ ℤ → ( 0 ∈ { 𝑧 } ↔ 0 = 𝑧 ) ) |
78 |
|
eqcom |
⊢ ( 0 = 𝑧 ↔ 𝑧 = 0 ) |
79 |
77 78
|
bitrdi |
⊢ ( 0 ∈ ℤ → ( 0 ∈ { 𝑧 } ↔ 𝑧 = 0 ) ) |
80 |
6 79
|
ax-mp |
⊢ ( 0 ∈ { 𝑧 } ↔ 𝑧 = 0 ) |
81 |
80
|
biimpri |
⊢ ( 𝑧 = 0 → 0 ∈ { 𝑧 } ) |
82 |
81
|
ad2antrr |
⊢ ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → 0 ∈ { 𝑧 } ) |
83 |
82
|
olcd |
⊢ ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( 0 ∈ 𝑦 ∨ 0 ∈ { 𝑧 } ) ) |
84 |
|
elun |
⊢ ( 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ↔ ( 0 ∈ 𝑦 ∨ 0 ∈ { 𝑧 } ) ) |
85 |
83 84
|
sylibr |
⊢ ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ) |
86 |
12 85 48
|
syl2an2 |
⊢ ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = 0 ) |
87 |
86
|
oveq2d |
⊢ ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( 𝑛 lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( 𝑛 lcm 0 ) ) |
88 |
51
|
ad2antlr |
⊢ ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → 𝑛 ∈ ℤ ) |
89 |
88 52
|
syl |
⊢ ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( 𝑛 lcm 0 ) = 0 ) |
90 |
87 89
|
eqtrd |
⊢ ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( 𝑛 lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) = 0 ) |
91 |
59 88 61
|
syl2an2 |
⊢ ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) = ( 𝑛 lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
92 |
12
|
adantl |
⊢ ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ) |
93 |
64
|
ad2antlr |
⊢ ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → { 𝑛 } ⊆ ℤ ) |
94 |
92 93
|
unssd |
⊢ ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ ) |
95 |
|
sneq |
⊢ ( 𝑧 = 0 → { 𝑧 } = { 0 } ) |
96 |
17 95
|
eleqtrrid |
⊢ ( 𝑧 = 0 → 0 ∈ { 𝑧 } ) |
97 |
96
|
ad2antrr |
⊢ ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → 0 ∈ { 𝑧 } ) |
98 |
97
|
olcd |
⊢ ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( 0 ∈ 𝑦 ∨ 0 ∈ { 𝑧 } ) ) |
99 |
98 84
|
sylibr |
⊢ ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ) |
100 |
99
|
orcd |
⊢ ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ∨ 0 ∈ { 𝑛 } ) ) |
101 |
100 68
|
sylibr |
⊢ ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → 0 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) |
102 |
94 101 71
|
syl2anc |
⊢ ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = 0 ) |
103 |
90 91 102
|
3eqtr4rd |
⊢ ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) |
104 |
103
|
a1d |
⊢ ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
105 |
104
|
expimpd |
⊢ ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
106 |
105
|
ex |
⊢ ( 𝑧 = 0 → ( 𝑛 ∈ ( ℤ ∖ { 0 } ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) |
107 |
|
ioran |
⊢ ( ¬ ( 0 ∈ 𝑦 ∨ 𝑧 = 0 ) ↔ ( ¬ 0 ∈ 𝑦 ∧ ¬ 𝑧 = 0 ) ) |
108 |
|
df-nel |
⊢ ( 0 ∉ 𝑦 ↔ ¬ 0 ∈ 𝑦 ) |
109 |
|
df-ne |
⊢ ( 𝑧 ≠ 0 ↔ ¬ 𝑧 = 0 ) |
110 |
108 109
|
anbi12i |
⊢ ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ) ↔ ( ¬ 0 ∈ 𝑦 ∧ ¬ 𝑧 = 0 ) ) |
111 |
107 110
|
bitr4i |
⊢ ( ¬ ( 0 ∈ 𝑦 ∨ 𝑧 = 0 ) ↔ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ) ) |
112 |
|
eldif |
⊢ ( 𝑛 ∈ ( ℤ ∖ { 0 } ) ↔ ( 𝑛 ∈ ℤ ∧ ¬ 𝑛 ∈ { 0 } ) ) |
113 |
|
velsn |
⊢ ( 𝑛 ∈ { 0 } ↔ 𝑛 = 0 ) |
114 |
113
|
bicomi |
⊢ ( 𝑛 = 0 ↔ 𝑛 ∈ { 0 } ) |
115 |
114
|
necon3abii |
⊢ ( 𝑛 ≠ 0 ↔ ¬ 𝑛 ∈ { 0 } ) |
116 |
|
lcmfunsnlem2lem2 |
⊢ ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) |
117 |
116
|
exp520 |
⊢ ( 0 ∉ 𝑦 → ( 𝑧 ≠ 0 → ( 𝑛 ≠ 0 → ( 𝑛 ∈ ℤ → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) ) ) |
118 |
117
|
imp |
⊢ ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ) → ( 𝑛 ≠ 0 → ( 𝑛 ∈ ℤ → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) ) |
119 |
115 118
|
syl5bir |
⊢ ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ) → ( ¬ 𝑛 ∈ { 0 } → ( 𝑛 ∈ ℤ → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) ) |
120 |
119
|
impcomd |
⊢ ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ) → ( ( 𝑛 ∈ ℤ ∧ ¬ 𝑛 ∈ { 0 } ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) |
121 |
112 120
|
syl5bi |
⊢ ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ) → ( 𝑛 ∈ ( ℤ ∖ { 0 } ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) |
122 |
111 121
|
sylbi |
⊢ ( ¬ ( 0 ∈ 𝑦 ∨ 𝑧 = 0 ) → ( 𝑛 ∈ ( ℤ ∖ { 0 } ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) |
123 |
76 106 122
|
ecase3 |
⊢ ( 𝑛 ∈ ( ℤ ∖ { 0 } ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
124 |
42 123
|
jaoi |
⊢ ( ( 𝑛 = 0 ∨ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
125 |
8 124
|
sylbi |
⊢ ( 𝑛 ∈ ℤ → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
126 |
125
|
com12 |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( 𝑛 ∈ ℤ → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
127 |
5 126
|
ralrimi |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) |