Step |
Hyp |
Ref |
Expression |
1 |
|
elun |
⊢ ( 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ↔ ( 𝑖 ∈ ( 𝑦 ∪ { 𝑧 } ) ∨ 𝑖 ∈ { 𝑛 } ) ) |
2 |
|
elun |
⊢ ( 𝑖 ∈ ( 𝑦 ∪ { 𝑧 } ) ↔ ( 𝑖 ∈ 𝑦 ∨ 𝑖 ∈ { 𝑧 } ) ) |
3 |
|
simp1 |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → 𝑧 ∈ ℤ ) |
4 |
3
|
adantr |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → 𝑧 ∈ ℤ ) |
5 |
4
|
adantl |
⊢ ( ( ( 𝑖 ∈ 𝑦 ∨ 𝑖 ∈ { 𝑧 } ) ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → 𝑧 ∈ ℤ ) |
6 |
|
sneq |
⊢ ( 𝑛 = 𝑧 → { 𝑛 } = { 𝑧 } ) |
7 |
6
|
uneq2d |
⊢ ( 𝑛 = 𝑧 → ( 𝑦 ∪ { 𝑛 } ) = ( 𝑦 ∪ { 𝑧 } ) ) |
8 |
7
|
fveq2d |
⊢ ( 𝑛 = 𝑧 → ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) |
9 |
|
oveq2 |
⊢ ( 𝑛 = 𝑧 → ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) = ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) |
10 |
8 9
|
eqeq12d |
⊢ ( 𝑛 = 𝑧 → ( ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ↔ ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) ) |
11 |
10
|
rspcv |
⊢ ( 𝑧 ∈ ℤ → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) ) |
12 |
5 11
|
syl |
⊢ ( ( ( 𝑖 ∈ 𝑦 ∨ 𝑖 ∈ { 𝑧 } ) ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) ) |
13 |
|
ssel |
⊢ ( 𝑦 ⊆ ℤ → ( 𝑖 ∈ 𝑦 → 𝑖 ∈ ℤ ) ) |
14 |
13
|
3ad2ant2 |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( 𝑖 ∈ 𝑦 → 𝑖 ∈ ℤ ) ) |
15 |
14
|
adantr |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( 𝑖 ∈ 𝑦 → 𝑖 ∈ ℤ ) ) |
16 |
15
|
impcom |
⊢ ( ( 𝑖 ∈ 𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → 𝑖 ∈ ℤ ) |
17 |
|
lcmfcl |
⊢ ( ( 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ 𝑦 ) ∈ ℕ0 ) |
18 |
17
|
nn0zd |
⊢ ( ( 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ 𝑦 ) ∈ ℤ ) |
19 |
18
|
3adant1 |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ 𝑦 ) ∈ ℤ ) |
20 |
19
|
adantr |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( lcm ‘ 𝑦 ) ∈ ℤ ) |
21 |
20
|
adantl |
⊢ ( ( 𝑖 ∈ 𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → ( lcm ‘ 𝑦 ) ∈ ℤ ) |
22 |
|
lcmcl |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 𝑧 lcm 𝑛 ) ∈ ℕ0 ) |
23 |
3 22
|
sylan |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( 𝑧 lcm 𝑛 ) ∈ ℕ0 ) |
24 |
23
|
nn0zd |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( 𝑧 lcm 𝑛 ) ∈ ℤ ) |
25 |
24
|
adantl |
⊢ ( ( 𝑖 ∈ 𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → ( 𝑧 lcm 𝑛 ) ∈ ℤ ) |
26 |
|
lcmcl |
⊢ ( ( ( lcm ‘ 𝑦 ) ∈ ℤ ∧ ( 𝑧 lcm 𝑛 ) ∈ ℤ ) → ( ( lcm ‘ 𝑦 ) lcm ( 𝑧 lcm 𝑛 ) ) ∈ ℕ0 ) |
27 |
21 25 26
|
syl2anc |
⊢ ( ( 𝑖 ∈ 𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → ( ( lcm ‘ 𝑦 ) lcm ( 𝑧 lcm 𝑛 ) ) ∈ ℕ0 ) |
28 |
27
|
nn0zd |
⊢ ( ( 𝑖 ∈ 𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → ( ( lcm ‘ 𝑦 ) lcm ( 𝑧 lcm 𝑛 ) ) ∈ ℤ ) |
29 |
|
breq1 |
⊢ ( 𝑘 = 𝑖 → ( 𝑘 ∥ ( lcm ‘ 𝑦 ) ↔ 𝑖 ∥ ( lcm ‘ 𝑦 ) ) ) |
30 |
29
|
rspcv |
⊢ ( 𝑖 ∈ 𝑦 → ( ∀ 𝑘 ∈ 𝑦 𝑘 ∥ ( lcm ‘ 𝑦 ) → 𝑖 ∥ ( lcm ‘ 𝑦 ) ) ) |
31 |
|
dvdslcmf |
⊢ ( ( 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ∀ 𝑘 ∈ 𝑦 𝑘 ∥ ( lcm ‘ 𝑦 ) ) |
32 |
31
|
3adant1 |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ∀ 𝑘 ∈ 𝑦 𝑘 ∥ ( lcm ‘ 𝑦 ) ) |
33 |
32
|
adantr |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ∀ 𝑘 ∈ 𝑦 𝑘 ∥ ( lcm ‘ 𝑦 ) ) |
34 |
30 33
|
impel |
⊢ ( ( 𝑖 ∈ 𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → 𝑖 ∥ ( lcm ‘ 𝑦 ) ) |
35 |
20 24
|
jca |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ( lcm ‘ 𝑦 ) ∈ ℤ ∧ ( 𝑧 lcm 𝑛 ) ∈ ℤ ) ) |
36 |
35
|
adantl |
⊢ ( ( 𝑖 ∈ 𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → ( ( lcm ‘ 𝑦 ) ∈ ℤ ∧ ( 𝑧 lcm 𝑛 ) ∈ ℤ ) ) |
37 |
|
dvdslcm |
⊢ ( ( ( lcm ‘ 𝑦 ) ∈ ℤ ∧ ( 𝑧 lcm 𝑛 ) ∈ ℤ ) → ( ( lcm ‘ 𝑦 ) ∥ ( ( lcm ‘ 𝑦 ) lcm ( 𝑧 lcm 𝑛 ) ) ∧ ( 𝑧 lcm 𝑛 ) ∥ ( ( lcm ‘ 𝑦 ) lcm ( 𝑧 lcm 𝑛 ) ) ) ) |
38 |
37
|
simpld |
⊢ ( ( ( lcm ‘ 𝑦 ) ∈ ℤ ∧ ( 𝑧 lcm 𝑛 ) ∈ ℤ ) → ( lcm ‘ 𝑦 ) ∥ ( ( lcm ‘ 𝑦 ) lcm ( 𝑧 lcm 𝑛 ) ) ) |
39 |
36 38
|
syl |
⊢ ( ( 𝑖 ∈ 𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → ( lcm ‘ 𝑦 ) ∥ ( ( lcm ‘ 𝑦 ) lcm ( 𝑧 lcm 𝑛 ) ) ) |
40 |
16 21 28 34 39
|
dvdstrd |
⊢ ( ( 𝑖 ∈ 𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → 𝑖 ∥ ( ( lcm ‘ 𝑦 ) lcm ( 𝑧 lcm 𝑛 ) ) ) |
41 |
4
|
adantl |
⊢ ( ( 𝑖 ∈ 𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → 𝑧 ∈ ℤ ) |
42 |
|
simprr |
⊢ ( ( 𝑖 ∈ 𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → 𝑛 ∈ ℤ ) |
43 |
|
lcmass |
⊢ ( ( ( lcm ‘ 𝑦 ) ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) = ( ( lcm ‘ 𝑦 ) lcm ( 𝑧 lcm 𝑛 ) ) ) |
44 |
21 41 42 43
|
syl3anc |
⊢ ( ( 𝑖 ∈ 𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) = ( ( lcm ‘ 𝑦 ) lcm ( 𝑧 lcm 𝑛 ) ) ) |
45 |
40 44
|
breqtrrd |
⊢ ( ( 𝑖 ∈ 𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → 𝑖 ∥ ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ) |
46 |
45
|
ex |
⊢ ( 𝑖 ∈ 𝑦 → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → 𝑖 ∥ ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ) ) |
47 |
|
elsni |
⊢ ( 𝑖 ∈ { 𝑧 } → 𝑖 = 𝑧 ) |
48 |
17
|
3adant1 |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ 𝑦 ) ∈ ℕ0 ) |
49 |
48
|
nn0zd |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ 𝑦 ) ∈ ℤ ) |
50 |
|
lcmcl |
⊢ ( ( ( lcm ‘ 𝑦 ) ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ∈ ℕ0 ) |
51 |
49 3 50
|
syl2anc |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ∈ ℕ0 ) |
52 |
51
|
nn0zd |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ∈ ℤ ) |
53 |
52
|
adantr |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ∈ ℤ ) |
54 |
|
lcmcl |
⊢ ( ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ∈ ℕ0 ) |
55 |
52 54
|
sylan |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ∈ ℕ0 ) |
56 |
55
|
nn0zd |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ∈ ℤ ) |
57 |
19 3
|
jca |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( ( lcm ‘ 𝑦 ) ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) |
58 |
57
|
adantr |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ( lcm ‘ 𝑦 ) ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) |
59 |
|
dvdslcm |
⊢ ( ( ( lcm ‘ 𝑦 ) ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( ( lcm ‘ 𝑦 ) ∥ ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ∧ 𝑧 ∥ ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) ) |
60 |
59
|
simprd |
⊢ ( ( ( lcm ‘ 𝑦 ) ∈ ℤ ∧ 𝑧 ∈ ℤ ) → 𝑧 ∥ ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) |
61 |
58 60
|
syl |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → 𝑧 ∥ ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) |
62 |
|
dvdslcm |
⊢ ( ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ∥ ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ∧ 𝑛 ∥ ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ) ) |
63 |
62
|
simpld |
⊢ ( ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ∥ ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ) |
64 |
52 63
|
sylan |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ∥ ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ) |
65 |
4 53 56 61 64
|
dvdstrd |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → 𝑧 ∥ ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ) |
66 |
|
breq1 |
⊢ ( 𝑖 = 𝑧 → ( 𝑖 ∥ ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ↔ 𝑧 ∥ ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ) ) |
67 |
65 66
|
syl5ibr |
⊢ ( 𝑖 = 𝑧 → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → 𝑖 ∥ ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ) ) |
68 |
47 67
|
syl |
⊢ ( 𝑖 ∈ { 𝑧 } → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → 𝑖 ∥ ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ) ) |
69 |
46 68
|
jaoi |
⊢ ( ( 𝑖 ∈ 𝑦 ∨ 𝑖 ∈ { 𝑧 } ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → 𝑖 ∥ ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ) ) |
70 |
69
|
imp |
⊢ ( ( ( 𝑖 ∈ 𝑦 ∨ 𝑖 ∈ { 𝑧 } ) ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → 𝑖 ∥ ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ) |
71 |
|
oveq1 |
⊢ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) = ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ) |
72 |
71
|
breq2d |
⊢ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) → ( 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ↔ 𝑖 ∥ ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ) ) |
73 |
70 72
|
syl5ibrcom |
⊢ ( ( ( 𝑖 ∈ 𝑦 ∨ 𝑖 ∈ { 𝑧 } ) ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
74 |
12 73
|
syld |
⊢ ( ( ( 𝑖 ∈ 𝑦 ∨ 𝑖 ∈ { 𝑧 } ) ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
75 |
74
|
ex |
⊢ ( ( 𝑖 ∈ 𝑦 ∨ 𝑖 ∈ { 𝑧 } ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) |
76 |
2 75
|
sylbi |
⊢ ( 𝑖 ∈ ( 𝑦 ∪ { 𝑧 } ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) |
77 |
|
elsni |
⊢ ( 𝑖 ∈ { 𝑛 } → 𝑖 = 𝑛 ) |
78 |
|
simp2 |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → 𝑦 ⊆ ℤ ) |
79 |
|
snssi |
⊢ ( 𝑧 ∈ ℤ → { 𝑧 } ⊆ ℤ ) |
80 |
79
|
3ad2ant1 |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → { 𝑧 } ⊆ ℤ ) |
81 |
78 80
|
unssd |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ) |
82 |
|
simp3 |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → 𝑦 ∈ Fin ) |
83 |
|
snfi |
⊢ { 𝑧 } ∈ Fin |
84 |
|
unfi |
⊢ ( ( 𝑦 ∈ Fin ∧ { 𝑧 } ∈ Fin ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
85 |
82 83 84
|
sylancl |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
86 |
|
lcmfcl |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℕ0 ) |
87 |
81 85 86
|
syl2anc |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℕ0 ) |
88 |
87
|
nn0zd |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ ) |
89 |
88
|
anim1i |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) |
90 |
89
|
adantr |
⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) |
91 |
|
dvdslcm |
⊢ ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∧ 𝑛 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
92 |
90 91
|
syl |
⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∧ 𝑛 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
93 |
92
|
simprd |
⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) → 𝑛 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) |
94 |
|
breq1 |
⊢ ( 𝑖 = 𝑛 → ( 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ↔ 𝑛 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
95 |
93 94
|
syl5ibr |
⊢ ( 𝑖 = 𝑛 → ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
96 |
95
|
expd |
⊢ ( 𝑖 = 𝑛 → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) |
97 |
77 96
|
syl |
⊢ ( 𝑖 ∈ { 𝑛 } → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) |
98 |
76 97
|
jaoi |
⊢ ( ( 𝑖 ∈ ( 𝑦 ∪ { 𝑧 } ) ∨ 𝑖 ∈ { 𝑛 } ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) |
99 |
1 98
|
sylbi |
⊢ ( 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) |
100 |
99
|
com13 |
⊢ ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) |
101 |
100
|
expd |
⊢ ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) → ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( 𝑛 ∈ ℤ → ( 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) ) |
102 |
101
|
adantl |
⊢ ( ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) → ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( 𝑛 ∈ ℤ → ( 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) ) |
103 |
102
|
impcom |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( 𝑛 ∈ ℤ → ( 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) |
104 |
103
|
impcom |
⊢ ( ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) → ( 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
105 |
104
|
adantl |
⊢ ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) ) → ( 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
106 |
105
|
ralrimiv |
⊢ ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) ) → ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) |
107 |
|
lcmfunsnlem2lem1 |
⊢ ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) ) → ∀ 𝑘 ∈ ℕ ( ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ≤ 𝑘 ) ) |
108 |
89
|
adantr |
⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) |
109 |
81
|
adantr |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ) |
110 |
85
|
adantr |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
111 |
|
df-nel |
⊢ ( 0 ∉ 𝑦 ↔ ¬ 0 ∈ 𝑦 ) |
112 |
111
|
biimpi |
⊢ ( 0 ∉ 𝑦 → ¬ 0 ∈ 𝑦 ) |
113 |
112
|
3ad2ant1 |
⊢ ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ¬ 0 ∈ 𝑦 ) |
114 |
|
elsni |
⊢ ( 0 ∈ { 𝑧 } → 0 = 𝑧 ) |
115 |
114
|
eqcomd |
⊢ ( 0 ∈ { 𝑧 } → 𝑧 = 0 ) |
116 |
115
|
necon3ai |
⊢ ( 𝑧 ≠ 0 → ¬ 0 ∈ { 𝑧 } ) |
117 |
116
|
3ad2ant2 |
⊢ ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ¬ 0 ∈ { 𝑧 } ) |
118 |
|
ioran |
⊢ ( ¬ ( 0 ∈ 𝑦 ∨ 0 ∈ { 𝑧 } ) ↔ ( ¬ 0 ∈ 𝑦 ∧ ¬ 0 ∈ { 𝑧 } ) ) |
119 |
113 117 118
|
sylanbrc |
⊢ ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ¬ ( 0 ∈ 𝑦 ∨ 0 ∈ { 𝑧 } ) ) |
120 |
|
elun |
⊢ ( 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ↔ ( 0 ∈ 𝑦 ∨ 0 ∈ { 𝑧 } ) ) |
121 |
119 120
|
sylnibr |
⊢ ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ¬ 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ) |
122 |
|
df-nel |
⊢ ( 0 ∉ ( 𝑦 ∪ { 𝑧 } ) ↔ ¬ 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ) |
123 |
121 122
|
sylibr |
⊢ ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → 0 ∉ ( 𝑦 ∪ { 𝑧 } ) ) |
124 |
|
lcmfn0cl |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ∧ 0 ∉ ( 𝑦 ∪ { 𝑧 } ) ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℕ ) |
125 |
109 110 123 124
|
syl2an3an |
⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℕ ) |
126 |
125
|
nnne0d |
⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ≠ 0 ) |
127 |
126
|
neneqd |
⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ¬ ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = 0 ) |
128 |
|
neneq |
⊢ ( 𝑛 ≠ 0 → ¬ 𝑛 = 0 ) |
129 |
128
|
3ad2ant3 |
⊢ ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ¬ 𝑛 = 0 ) |
130 |
129
|
adantl |
⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ¬ 𝑛 = 0 ) |
131 |
|
ioran |
⊢ ( ¬ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = 0 ∨ 𝑛 = 0 ) ↔ ( ¬ ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = 0 ∧ ¬ 𝑛 = 0 ) ) |
132 |
127 130 131
|
sylanbrc |
⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ¬ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = 0 ∨ 𝑛 = 0 ) ) |
133 |
|
lcmn0cl |
⊢ ( ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ ¬ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = 0 ∨ 𝑛 = 0 ) ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∈ ℕ ) |
134 |
108 132 133
|
syl2anc |
⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∈ ℕ ) |
135 |
|
snssi |
⊢ ( 𝑛 ∈ ℤ → { 𝑛 } ⊆ ℤ ) |
136 |
135
|
adantl |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → { 𝑛 } ⊆ ℤ ) |
137 |
109 136
|
unssd |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ ) |
138 |
137
|
adantr |
⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ ) |
139 |
83 84
|
mpan2 |
⊢ ( 𝑦 ∈ Fin → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
140 |
|
snfi |
⊢ { 𝑛 } ∈ Fin |
141 |
|
unfi |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ∧ { 𝑛 } ∈ Fin ) → ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin ) |
142 |
139 140 141
|
sylancl |
⊢ ( 𝑦 ∈ Fin → ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin ) |
143 |
142
|
3ad2ant3 |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin ) |
144 |
143
|
adantr |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin ) |
145 |
144
|
adantr |
⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin ) |
146 |
|
elun |
⊢ ( 0 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ↔ ( 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ∨ 0 ∈ { 𝑛 } ) ) |
147 |
|
nnel |
⊢ ( ¬ 0 ∉ 𝑦 ↔ 0 ∈ 𝑦 ) |
148 |
147
|
biimpri |
⊢ ( 0 ∈ 𝑦 → ¬ 0 ∉ 𝑦 ) |
149 |
148
|
3mix1d |
⊢ ( 0 ∈ 𝑦 → ( ¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0 ) ) |
150 |
|
nne |
⊢ ( ¬ 𝑧 ≠ 0 ↔ 𝑧 = 0 ) |
151 |
115 150
|
sylibr |
⊢ ( 0 ∈ { 𝑧 } → ¬ 𝑧 ≠ 0 ) |
152 |
151
|
3mix2d |
⊢ ( 0 ∈ { 𝑧 } → ( ¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0 ) ) |
153 |
149 152
|
jaoi |
⊢ ( ( 0 ∈ 𝑦 ∨ 0 ∈ { 𝑧 } ) → ( ¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0 ) ) |
154 |
120 153
|
sylbi |
⊢ ( 0 ∈ ( 𝑦 ∪ { 𝑧 } ) → ( ¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0 ) ) |
155 |
|
elsni |
⊢ ( 0 ∈ { 𝑛 } → 0 = 𝑛 ) |
156 |
155
|
eqcomd |
⊢ ( 0 ∈ { 𝑛 } → 𝑛 = 0 ) |
157 |
|
nne |
⊢ ( ¬ 𝑛 ≠ 0 ↔ 𝑛 = 0 ) |
158 |
156 157
|
sylibr |
⊢ ( 0 ∈ { 𝑛 } → ¬ 𝑛 ≠ 0 ) |
159 |
158
|
3mix3d |
⊢ ( 0 ∈ { 𝑛 } → ( ¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0 ) ) |
160 |
154 159
|
jaoi |
⊢ ( ( 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ∨ 0 ∈ { 𝑛 } ) → ( ¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0 ) ) |
161 |
146 160
|
sylbi |
⊢ ( 0 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) → ( ¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0 ) ) |
162 |
|
3ianor |
⊢ ( ¬ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ↔ ( ¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0 ) ) |
163 |
161 162
|
sylibr |
⊢ ( 0 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) → ¬ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) |
164 |
163
|
con2i |
⊢ ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ¬ 0 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) |
165 |
|
df-nel |
⊢ ( 0 ∉ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ↔ ¬ 0 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) |
166 |
164 165
|
sylibr |
⊢ ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → 0 ∉ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) |
167 |
166
|
adantl |
⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → 0 ∉ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) |
168 |
138 145 167
|
3jca |
⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ( ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ ∧ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin ∧ 0 ∉ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) ) |
169 |
134 168
|
jca |
⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∈ ℕ ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ ∧ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin ∧ 0 ∉ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) ) ) |
170 |
169
|
ex |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∈ ℕ ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ ∧ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin ∧ 0 ∉ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) ) ) ) |
171 |
170
|
ex |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( 𝑛 ∈ ℤ → ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∈ ℕ ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ ∧ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin ∧ 0 ∉ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) ) ) ) ) |
172 |
171
|
adantr |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( 𝑛 ∈ ℤ → ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∈ ℕ ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ ∧ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin ∧ 0 ∉ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) ) ) ) ) |
173 |
172
|
impcom |
⊢ ( ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) → ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∈ ℕ ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ ∧ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin ∧ 0 ∉ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) ) ) ) |
174 |
173
|
impcom |
⊢ ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) ) → ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∈ ℕ ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ ∧ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin ∧ 0 ∉ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) ) ) |
175 |
|
lcmf |
⊢ ( ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∈ ℕ ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ ∧ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin ∧ 0 ∉ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) ) → ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) = ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) ↔ ( ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∧ ∀ 𝑘 ∈ ℕ ( ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ≤ 𝑘 ) ) ) ) |
176 |
174 175
|
syl |
⊢ ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) ) → ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) = ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) ↔ ( ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∧ ∀ 𝑘 ∈ ℕ ( ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ≤ 𝑘 ) ) ) ) |
177 |
106 107 176
|
mpbir2and |
⊢ ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) = ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) ) |
178 |
177
|
eqcomd |
⊢ ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) |