| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elun |
⊢ ( 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ↔ ( 𝑖 ∈ ( 𝑦 ∪ { 𝑧 } ) ∨ 𝑖 ∈ { 𝑛 } ) ) |
| 2 |
|
elun |
⊢ ( 𝑖 ∈ ( 𝑦 ∪ { 𝑧 } ) ↔ ( 𝑖 ∈ 𝑦 ∨ 𝑖 ∈ { 𝑧 } ) ) |
| 3 |
|
simp1 |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → 𝑧 ∈ ℤ ) |
| 4 |
3
|
adantr |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → 𝑧 ∈ ℤ ) |
| 5 |
4
|
adantl |
⊢ ( ( ( 𝑖 ∈ 𝑦 ∨ 𝑖 ∈ { 𝑧 } ) ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → 𝑧 ∈ ℤ ) |
| 6 |
|
sneq |
⊢ ( 𝑛 = 𝑧 → { 𝑛 } = { 𝑧 } ) |
| 7 |
6
|
uneq2d |
⊢ ( 𝑛 = 𝑧 → ( 𝑦 ∪ { 𝑛 } ) = ( 𝑦 ∪ { 𝑧 } ) ) |
| 8 |
7
|
fveq2d |
⊢ ( 𝑛 = 𝑧 → ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) |
| 9 |
|
oveq2 |
⊢ ( 𝑛 = 𝑧 → ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) = ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) |
| 10 |
8 9
|
eqeq12d |
⊢ ( 𝑛 = 𝑧 → ( ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ↔ ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) ) |
| 11 |
10
|
rspcv |
⊢ ( 𝑧 ∈ ℤ → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) ) |
| 12 |
5 11
|
syl |
⊢ ( ( ( 𝑖 ∈ 𝑦 ∨ 𝑖 ∈ { 𝑧 } ) ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) ) |
| 13 |
|
ssel |
⊢ ( 𝑦 ⊆ ℤ → ( 𝑖 ∈ 𝑦 → 𝑖 ∈ ℤ ) ) |
| 14 |
13
|
3ad2ant2 |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( 𝑖 ∈ 𝑦 → 𝑖 ∈ ℤ ) ) |
| 15 |
14
|
adantr |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( 𝑖 ∈ 𝑦 → 𝑖 ∈ ℤ ) ) |
| 16 |
15
|
impcom |
⊢ ( ( 𝑖 ∈ 𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → 𝑖 ∈ ℤ ) |
| 17 |
|
lcmfcl |
⊢ ( ( 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ 𝑦 ) ∈ ℕ0 ) |
| 18 |
17
|
nn0zd |
⊢ ( ( 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ 𝑦 ) ∈ ℤ ) |
| 19 |
18
|
3adant1 |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ 𝑦 ) ∈ ℤ ) |
| 20 |
19
|
adantr |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( lcm ‘ 𝑦 ) ∈ ℤ ) |
| 21 |
20
|
adantl |
⊢ ( ( 𝑖 ∈ 𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → ( lcm ‘ 𝑦 ) ∈ ℤ ) |
| 22 |
|
lcmcl |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 𝑧 lcm 𝑛 ) ∈ ℕ0 ) |
| 23 |
3 22
|
sylan |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( 𝑧 lcm 𝑛 ) ∈ ℕ0 ) |
| 24 |
23
|
nn0zd |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( 𝑧 lcm 𝑛 ) ∈ ℤ ) |
| 25 |
24
|
adantl |
⊢ ( ( 𝑖 ∈ 𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → ( 𝑧 lcm 𝑛 ) ∈ ℤ ) |
| 26 |
|
lcmcl |
⊢ ( ( ( lcm ‘ 𝑦 ) ∈ ℤ ∧ ( 𝑧 lcm 𝑛 ) ∈ ℤ ) → ( ( lcm ‘ 𝑦 ) lcm ( 𝑧 lcm 𝑛 ) ) ∈ ℕ0 ) |
| 27 |
21 25 26
|
syl2anc |
⊢ ( ( 𝑖 ∈ 𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → ( ( lcm ‘ 𝑦 ) lcm ( 𝑧 lcm 𝑛 ) ) ∈ ℕ0 ) |
| 28 |
27
|
nn0zd |
⊢ ( ( 𝑖 ∈ 𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → ( ( lcm ‘ 𝑦 ) lcm ( 𝑧 lcm 𝑛 ) ) ∈ ℤ ) |
| 29 |
|
breq1 |
⊢ ( 𝑘 = 𝑖 → ( 𝑘 ∥ ( lcm ‘ 𝑦 ) ↔ 𝑖 ∥ ( lcm ‘ 𝑦 ) ) ) |
| 30 |
29
|
rspcv |
⊢ ( 𝑖 ∈ 𝑦 → ( ∀ 𝑘 ∈ 𝑦 𝑘 ∥ ( lcm ‘ 𝑦 ) → 𝑖 ∥ ( lcm ‘ 𝑦 ) ) ) |
| 31 |
|
dvdslcmf |
⊢ ( ( 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ∀ 𝑘 ∈ 𝑦 𝑘 ∥ ( lcm ‘ 𝑦 ) ) |
| 32 |
31
|
3adant1 |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ∀ 𝑘 ∈ 𝑦 𝑘 ∥ ( lcm ‘ 𝑦 ) ) |
| 33 |
32
|
adantr |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ∀ 𝑘 ∈ 𝑦 𝑘 ∥ ( lcm ‘ 𝑦 ) ) |
| 34 |
30 33
|
impel |
⊢ ( ( 𝑖 ∈ 𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → 𝑖 ∥ ( lcm ‘ 𝑦 ) ) |
| 35 |
20 24
|
jca |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ( lcm ‘ 𝑦 ) ∈ ℤ ∧ ( 𝑧 lcm 𝑛 ) ∈ ℤ ) ) |
| 36 |
35
|
adantl |
⊢ ( ( 𝑖 ∈ 𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → ( ( lcm ‘ 𝑦 ) ∈ ℤ ∧ ( 𝑧 lcm 𝑛 ) ∈ ℤ ) ) |
| 37 |
|
dvdslcm |
⊢ ( ( ( lcm ‘ 𝑦 ) ∈ ℤ ∧ ( 𝑧 lcm 𝑛 ) ∈ ℤ ) → ( ( lcm ‘ 𝑦 ) ∥ ( ( lcm ‘ 𝑦 ) lcm ( 𝑧 lcm 𝑛 ) ) ∧ ( 𝑧 lcm 𝑛 ) ∥ ( ( lcm ‘ 𝑦 ) lcm ( 𝑧 lcm 𝑛 ) ) ) ) |
| 38 |
37
|
simpld |
⊢ ( ( ( lcm ‘ 𝑦 ) ∈ ℤ ∧ ( 𝑧 lcm 𝑛 ) ∈ ℤ ) → ( lcm ‘ 𝑦 ) ∥ ( ( lcm ‘ 𝑦 ) lcm ( 𝑧 lcm 𝑛 ) ) ) |
| 39 |
36 38
|
syl |
⊢ ( ( 𝑖 ∈ 𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → ( lcm ‘ 𝑦 ) ∥ ( ( lcm ‘ 𝑦 ) lcm ( 𝑧 lcm 𝑛 ) ) ) |
| 40 |
16 21 28 34 39
|
dvdstrd |
⊢ ( ( 𝑖 ∈ 𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → 𝑖 ∥ ( ( lcm ‘ 𝑦 ) lcm ( 𝑧 lcm 𝑛 ) ) ) |
| 41 |
4
|
adantl |
⊢ ( ( 𝑖 ∈ 𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → 𝑧 ∈ ℤ ) |
| 42 |
|
simprr |
⊢ ( ( 𝑖 ∈ 𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → 𝑛 ∈ ℤ ) |
| 43 |
|
lcmass |
⊢ ( ( ( lcm ‘ 𝑦 ) ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) = ( ( lcm ‘ 𝑦 ) lcm ( 𝑧 lcm 𝑛 ) ) ) |
| 44 |
21 41 42 43
|
syl3anc |
⊢ ( ( 𝑖 ∈ 𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) = ( ( lcm ‘ 𝑦 ) lcm ( 𝑧 lcm 𝑛 ) ) ) |
| 45 |
40 44
|
breqtrrd |
⊢ ( ( 𝑖 ∈ 𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → 𝑖 ∥ ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ) |
| 46 |
45
|
ex |
⊢ ( 𝑖 ∈ 𝑦 → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → 𝑖 ∥ ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ) ) |
| 47 |
|
elsni |
⊢ ( 𝑖 ∈ { 𝑧 } → 𝑖 = 𝑧 ) |
| 48 |
17
|
3adant1 |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ 𝑦 ) ∈ ℕ0 ) |
| 49 |
48
|
nn0zd |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ 𝑦 ) ∈ ℤ ) |
| 50 |
|
lcmcl |
⊢ ( ( ( lcm ‘ 𝑦 ) ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ∈ ℕ0 ) |
| 51 |
49 3 50
|
syl2anc |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ∈ ℕ0 ) |
| 52 |
51
|
nn0zd |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ∈ ℤ ) |
| 53 |
52
|
adantr |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ∈ ℤ ) |
| 54 |
|
lcmcl |
⊢ ( ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ∈ ℕ0 ) |
| 55 |
52 54
|
sylan |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ∈ ℕ0 ) |
| 56 |
55
|
nn0zd |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ∈ ℤ ) |
| 57 |
19 3
|
jca |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( ( lcm ‘ 𝑦 ) ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) |
| 58 |
57
|
adantr |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ( lcm ‘ 𝑦 ) ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) |
| 59 |
|
dvdslcm |
⊢ ( ( ( lcm ‘ 𝑦 ) ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( ( lcm ‘ 𝑦 ) ∥ ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ∧ 𝑧 ∥ ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) ) |
| 60 |
59
|
simprd |
⊢ ( ( ( lcm ‘ 𝑦 ) ∈ ℤ ∧ 𝑧 ∈ ℤ ) → 𝑧 ∥ ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) |
| 61 |
58 60
|
syl |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → 𝑧 ∥ ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) |
| 62 |
|
dvdslcm |
⊢ ( ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ∥ ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ∧ 𝑛 ∥ ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ) ) |
| 63 |
62
|
simpld |
⊢ ( ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ∥ ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ) |
| 64 |
52 63
|
sylan |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ∥ ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ) |
| 65 |
4 53 56 61 64
|
dvdstrd |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → 𝑧 ∥ ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ) |
| 66 |
|
breq1 |
⊢ ( 𝑖 = 𝑧 → ( 𝑖 ∥ ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ↔ 𝑧 ∥ ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ) ) |
| 67 |
65 66
|
imbitrrid |
⊢ ( 𝑖 = 𝑧 → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → 𝑖 ∥ ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ) ) |
| 68 |
47 67
|
syl |
⊢ ( 𝑖 ∈ { 𝑧 } → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → 𝑖 ∥ ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ) ) |
| 69 |
46 68
|
jaoi |
⊢ ( ( 𝑖 ∈ 𝑦 ∨ 𝑖 ∈ { 𝑧 } ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → 𝑖 ∥ ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ) ) |
| 70 |
69
|
imp |
⊢ ( ( ( 𝑖 ∈ 𝑦 ∨ 𝑖 ∈ { 𝑧 } ) ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → 𝑖 ∥ ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ) |
| 71 |
|
oveq1 |
⊢ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) = ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ) |
| 72 |
71
|
breq2d |
⊢ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) → ( 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ↔ 𝑖 ∥ ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ) ) |
| 73 |
70 72
|
syl5ibrcom |
⊢ ( ( ( 𝑖 ∈ 𝑦 ∨ 𝑖 ∈ { 𝑧 } ) ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
| 74 |
12 73
|
syld |
⊢ ( ( ( 𝑖 ∈ 𝑦 ∨ 𝑖 ∈ { 𝑧 } ) ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
| 75 |
74
|
ex |
⊢ ( ( 𝑖 ∈ 𝑦 ∨ 𝑖 ∈ { 𝑧 } ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) |
| 76 |
2 75
|
sylbi |
⊢ ( 𝑖 ∈ ( 𝑦 ∪ { 𝑧 } ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) |
| 77 |
|
elsni |
⊢ ( 𝑖 ∈ { 𝑛 } → 𝑖 = 𝑛 ) |
| 78 |
|
simp2 |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → 𝑦 ⊆ ℤ ) |
| 79 |
|
snssi |
⊢ ( 𝑧 ∈ ℤ → { 𝑧 } ⊆ ℤ ) |
| 80 |
79
|
3ad2ant1 |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → { 𝑧 } ⊆ ℤ ) |
| 81 |
78 80
|
unssd |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ) |
| 82 |
|
simp3 |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → 𝑦 ∈ Fin ) |
| 83 |
|
snfi |
⊢ { 𝑧 } ∈ Fin |
| 84 |
|
unfi |
⊢ ( ( 𝑦 ∈ Fin ∧ { 𝑧 } ∈ Fin ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
| 85 |
82 83 84
|
sylancl |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
| 86 |
|
lcmfcl |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℕ0 ) |
| 87 |
81 85 86
|
syl2anc |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℕ0 ) |
| 88 |
87
|
nn0zd |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ ) |
| 89 |
88
|
anim1i |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) |
| 90 |
89
|
adantr |
⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) |
| 91 |
|
dvdslcm |
⊢ ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∧ 𝑛 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
| 92 |
90 91
|
syl |
⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∧ 𝑛 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
| 93 |
92
|
simprd |
⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) → 𝑛 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) |
| 94 |
|
breq1 |
⊢ ( 𝑖 = 𝑛 → ( 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ↔ 𝑛 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
| 95 |
93 94
|
imbitrrid |
⊢ ( 𝑖 = 𝑛 → ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
| 96 |
95
|
expd |
⊢ ( 𝑖 = 𝑛 → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) |
| 97 |
77 96
|
syl |
⊢ ( 𝑖 ∈ { 𝑛 } → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) |
| 98 |
76 97
|
jaoi |
⊢ ( ( 𝑖 ∈ ( 𝑦 ∪ { 𝑧 } ) ∨ 𝑖 ∈ { 𝑛 } ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) |
| 99 |
1 98
|
sylbi |
⊢ ( 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) |
| 100 |
99
|
com13 |
⊢ ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) |
| 101 |
100
|
expd |
⊢ ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) → ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( 𝑛 ∈ ℤ → ( 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) ) |
| 102 |
101
|
adantl |
⊢ ( ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) → ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( 𝑛 ∈ ℤ → ( 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) ) |
| 103 |
102
|
impcom |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( 𝑛 ∈ ℤ → ( 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) |
| 104 |
103
|
impcom |
⊢ ( ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) → ( 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
| 105 |
104
|
adantl |
⊢ ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) ) → ( 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
| 106 |
105
|
ralrimiv |
⊢ ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) ) → ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) |
| 107 |
|
lcmfunsnlem2lem1 |
⊢ ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) ) → ∀ 𝑘 ∈ ℕ ( ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ≤ 𝑘 ) ) |
| 108 |
89
|
adantr |
⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) |
| 109 |
81
|
adantr |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ) |
| 110 |
85
|
adantr |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
| 111 |
|
df-nel |
⊢ ( 0 ∉ 𝑦 ↔ ¬ 0 ∈ 𝑦 ) |
| 112 |
111
|
biimpi |
⊢ ( 0 ∉ 𝑦 → ¬ 0 ∈ 𝑦 ) |
| 113 |
112
|
3ad2ant1 |
⊢ ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ¬ 0 ∈ 𝑦 ) |
| 114 |
|
elsni |
⊢ ( 0 ∈ { 𝑧 } → 0 = 𝑧 ) |
| 115 |
114
|
eqcomd |
⊢ ( 0 ∈ { 𝑧 } → 𝑧 = 0 ) |
| 116 |
115
|
necon3ai |
⊢ ( 𝑧 ≠ 0 → ¬ 0 ∈ { 𝑧 } ) |
| 117 |
116
|
3ad2ant2 |
⊢ ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ¬ 0 ∈ { 𝑧 } ) |
| 118 |
|
ioran |
⊢ ( ¬ ( 0 ∈ 𝑦 ∨ 0 ∈ { 𝑧 } ) ↔ ( ¬ 0 ∈ 𝑦 ∧ ¬ 0 ∈ { 𝑧 } ) ) |
| 119 |
113 117 118
|
sylanbrc |
⊢ ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ¬ ( 0 ∈ 𝑦 ∨ 0 ∈ { 𝑧 } ) ) |
| 120 |
|
elun |
⊢ ( 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ↔ ( 0 ∈ 𝑦 ∨ 0 ∈ { 𝑧 } ) ) |
| 121 |
119 120
|
sylnibr |
⊢ ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ¬ 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ) |
| 122 |
|
df-nel |
⊢ ( 0 ∉ ( 𝑦 ∪ { 𝑧 } ) ↔ ¬ 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ) |
| 123 |
121 122
|
sylibr |
⊢ ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → 0 ∉ ( 𝑦 ∪ { 𝑧 } ) ) |
| 124 |
|
lcmfn0cl |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ∧ 0 ∉ ( 𝑦 ∪ { 𝑧 } ) ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℕ ) |
| 125 |
109 110 123 124
|
syl2an3an |
⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℕ ) |
| 126 |
125
|
nnne0d |
⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ≠ 0 ) |
| 127 |
126
|
neneqd |
⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ¬ ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = 0 ) |
| 128 |
|
neneq |
⊢ ( 𝑛 ≠ 0 → ¬ 𝑛 = 0 ) |
| 129 |
128
|
3ad2ant3 |
⊢ ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ¬ 𝑛 = 0 ) |
| 130 |
129
|
adantl |
⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ¬ 𝑛 = 0 ) |
| 131 |
|
ioran |
⊢ ( ¬ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = 0 ∨ 𝑛 = 0 ) ↔ ( ¬ ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = 0 ∧ ¬ 𝑛 = 0 ) ) |
| 132 |
127 130 131
|
sylanbrc |
⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ¬ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = 0 ∨ 𝑛 = 0 ) ) |
| 133 |
|
lcmn0cl |
⊢ ( ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ ¬ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = 0 ∨ 𝑛 = 0 ) ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∈ ℕ ) |
| 134 |
108 132 133
|
syl2anc |
⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∈ ℕ ) |
| 135 |
|
snssi |
⊢ ( 𝑛 ∈ ℤ → { 𝑛 } ⊆ ℤ ) |
| 136 |
135
|
adantl |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → { 𝑛 } ⊆ ℤ ) |
| 137 |
109 136
|
unssd |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ ) |
| 138 |
137
|
adantr |
⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ ) |
| 139 |
83 84
|
mpan2 |
⊢ ( 𝑦 ∈ Fin → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
| 140 |
|
snfi |
⊢ { 𝑛 } ∈ Fin |
| 141 |
|
unfi |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ∧ { 𝑛 } ∈ Fin ) → ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin ) |
| 142 |
139 140 141
|
sylancl |
⊢ ( 𝑦 ∈ Fin → ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin ) |
| 143 |
142
|
3ad2ant3 |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin ) |
| 144 |
143
|
adantr |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin ) |
| 145 |
144
|
adantr |
⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin ) |
| 146 |
|
elun |
⊢ ( 0 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ↔ ( 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ∨ 0 ∈ { 𝑛 } ) ) |
| 147 |
|
nnel |
⊢ ( ¬ 0 ∉ 𝑦 ↔ 0 ∈ 𝑦 ) |
| 148 |
147
|
biimpri |
⊢ ( 0 ∈ 𝑦 → ¬ 0 ∉ 𝑦 ) |
| 149 |
148
|
3mix1d |
⊢ ( 0 ∈ 𝑦 → ( ¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0 ) ) |
| 150 |
|
nne |
⊢ ( ¬ 𝑧 ≠ 0 ↔ 𝑧 = 0 ) |
| 151 |
115 150
|
sylibr |
⊢ ( 0 ∈ { 𝑧 } → ¬ 𝑧 ≠ 0 ) |
| 152 |
151
|
3mix2d |
⊢ ( 0 ∈ { 𝑧 } → ( ¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0 ) ) |
| 153 |
149 152
|
jaoi |
⊢ ( ( 0 ∈ 𝑦 ∨ 0 ∈ { 𝑧 } ) → ( ¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0 ) ) |
| 154 |
120 153
|
sylbi |
⊢ ( 0 ∈ ( 𝑦 ∪ { 𝑧 } ) → ( ¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0 ) ) |
| 155 |
|
elsni |
⊢ ( 0 ∈ { 𝑛 } → 0 = 𝑛 ) |
| 156 |
155
|
eqcomd |
⊢ ( 0 ∈ { 𝑛 } → 𝑛 = 0 ) |
| 157 |
|
nne |
⊢ ( ¬ 𝑛 ≠ 0 ↔ 𝑛 = 0 ) |
| 158 |
156 157
|
sylibr |
⊢ ( 0 ∈ { 𝑛 } → ¬ 𝑛 ≠ 0 ) |
| 159 |
158
|
3mix3d |
⊢ ( 0 ∈ { 𝑛 } → ( ¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0 ) ) |
| 160 |
154 159
|
jaoi |
⊢ ( ( 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ∨ 0 ∈ { 𝑛 } ) → ( ¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0 ) ) |
| 161 |
146 160
|
sylbi |
⊢ ( 0 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) → ( ¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0 ) ) |
| 162 |
|
3ianor |
⊢ ( ¬ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ↔ ( ¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0 ) ) |
| 163 |
161 162
|
sylibr |
⊢ ( 0 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) → ¬ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) |
| 164 |
163
|
con2i |
⊢ ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ¬ 0 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) |
| 165 |
|
df-nel |
⊢ ( 0 ∉ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ↔ ¬ 0 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) |
| 166 |
164 165
|
sylibr |
⊢ ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → 0 ∉ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) |
| 167 |
166
|
adantl |
⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → 0 ∉ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) |
| 168 |
138 145 167
|
3jca |
⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ( ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ ∧ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin ∧ 0 ∉ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) ) |
| 169 |
134 168
|
jca |
⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∈ ℕ ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ ∧ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin ∧ 0 ∉ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) ) ) |
| 170 |
169
|
ex |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∈ ℕ ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ ∧ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin ∧ 0 ∉ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) ) ) ) |
| 171 |
170
|
ex |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( 𝑛 ∈ ℤ → ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∈ ℕ ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ ∧ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin ∧ 0 ∉ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) ) ) ) ) |
| 172 |
171
|
adantr |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( 𝑛 ∈ ℤ → ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∈ ℕ ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ ∧ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin ∧ 0 ∉ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) ) ) ) ) |
| 173 |
172
|
impcom |
⊢ ( ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) → ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∈ ℕ ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ ∧ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin ∧ 0 ∉ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) ) ) ) |
| 174 |
173
|
impcom |
⊢ ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) ) → ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∈ ℕ ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ ∧ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin ∧ 0 ∉ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) ) ) |
| 175 |
|
lcmf |
⊢ ( ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∈ ℕ ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ ∧ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin ∧ 0 ∉ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) ) → ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) = ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) ↔ ( ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∧ ∀ 𝑘 ∈ ℕ ( ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ≤ 𝑘 ) ) ) ) |
| 176 |
174 175
|
syl |
⊢ ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) ) → ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) = ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) ↔ ( ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∧ ∀ 𝑘 ∈ ℕ ( ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ≤ 𝑘 ) ) ) ) |
| 177 |
106 107 176
|
mpbir2and |
⊢ ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) = ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) ) |
| 178 |
177
|
eqcomd |
⊢ ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) |