Metamath Proof Explorer


Theorem lcmfunsnlem2lem2

Description: Lemma 2 for lcmfunsnlem2 . (Contributed by AV, 26-Aug-2020)

Ref Expression
Assertion lcmfunsnlem2lem2 ( ( ( 0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚𝑦 𝑚𝑘 → ( lcm𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) ) ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) )

Proof

Step Hyp Ref Expression
1 elun ( 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ↔ ( 𝑖 ∈ ( 𝑦 ∪ { 𝑧 } ) ∨ 𝑖 ∈ { 𝑛 } ) )
2 elun ( 𝑖 ∈ ( 𝑦 ∪ { 𝑧 } ) ↔ ( 𝑖𝑦𝑖 ∈ { 𝑧 } ) )
3 simp1 ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → 𝑧 ∈ ℤ )
4 3 adantr ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → 𝑧 ∈ ℤ )
5 4 adantl ( ( ( 𝑖𝑦𝑖 ∈ { 𝑧 } ) ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → 𝑧 ∈ ℤ )
6 sneq ( 𝑛 = 𝑧 → { 𝑛 } = { 𝑧 } )
7 6 uneq2d ( 𝑛 = 𝑧 → ( 𝑦 ∪ { 𝑛 } ) = ( 𝑦 ∪ { 𝑧 } ) )
8 7 fveq2d ( 𝑛 = 𝑧 → ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) )
9 oveq2 ( 𝑛 = 𝑧 → ( ( lcm𝑦 ) lcm 𝑛 ) = ( ( lcm𝑦 ) lcm 𝑧 ) )
10 8 9 eqeq12d ( 𝑛 = 𝑧 → ( ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) ↔ ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( lcm𝑦 ) lcm 𝑧 ) ) )
11 10 rspcv ( 𝑧 ∈ ℤ → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( lcm𝑦 ) lcm 𝑧 ) ) )
12 5 11 syl ( ( ( 𝑖𝑦𝑖 ∈ { 𝑧 } ) ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( lcm𝑦 ) lcm 𝑧 ) ) )
13 ssel ( 𝑦 ⊆ ℤ → ( 𝑖𝑦𝑖 ∈ ℤ ) )
14 13 3ad2ant2 ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( 𝑖𝑦𝑖 ∈ ℤ ) )
15 14 adantr ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( 𝑖𝑦𝑖 ∈ ℤ ) )
16 15 impcom ( ( 𝑖𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → 𝑖 ∈ ℤ )
17 lcmfcl ( ( 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm𝑦 ) ∈ ℕ0 )
18 17 nn0zd ( ( 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm𝑦 ) ∈ ℤ )
19 18 3adant1 ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm𝑦 ) ∈ ℤ )
20 19 adantr ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( lcm𝑦 ) ∈ ℤ )
21 20 adantl ( ( 𝑖𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → ( lcm𝑦 ) ∈ ℤ )
22 lcmcl ( ( 𝑧 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 𝑧 lcm 𝑛 ) ∈ ℕ0 )
23 3 22 sylan ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( 𝑧 lcm 𝑛 ) ∈ ℕ0 )
24 23 nn0zd ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( 𝑧 lcm 𝑛 ) ∈ ℤ )
25 24 adantl ( ( 𝑖𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → ( 𝑧 lcm 𝑛 ) ∈ ℤ )
26 lcmcl ( ( ( lcm𝑦 ) ∈ ℤ ∧ ( 𝑧 lcm 𝑛 ) ∈ ℤ ) → ( ( lcm𝑦 ) lcm ( 𝑧 lcm 𝑛 ) ) ∈ ℕ0 )
27 21 25 26 syl2anc ( ( 𝑖𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → ( ( lcm𝑦 ) lcm ( 𝑧 lcm 𝑛 ) ) ∈ ℕ0 )
28 27 nn0zd ( ( 𝑖𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → ( ( lcm𝑦 ) lcm ( 𝑧 lcm 𝑛 ) ) ∈ ℤ )
29 breq1 ( 𝑘 = 𝑖 → ( 𝑘 ∥ ( lcm𝑦 ) ↔ 𝑖 ∥ ( lcm𝑦 ) ) )
30 29 rspcv ( 𝑖𝑦 → ( ∀ 𝑘𝑦 𝑘 ∥ ( lcm𝑦 ) → 𝑖 ∥ ( lcm𝑦 ) ) )
31 dvdslcmf ( ( 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ∀ 𝑘𝑦 𝑘 ∥ ( lcm𝑦 ) )
32 31 3adant1 ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ∀ 𝑘𝑦 𝑘 ∥ ( lcm𝑦 ) )
33 32 adantr ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ∀ 𝑘𝑦 𝑘 ∥ ( lcm𝑦 ) )
34 30 33 impel ( ( 𝑖𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → 𝑖 ∥ ( lcm𝑦 ) )
35 20 24 jca ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ( lcm𝑦 ) ∈ ℤ ∧ ( 𝑧 lcm 𝑛 ) ∈ ℤ ) )
36 35 adantl ( ( 𝑖𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → ( ( lcm𝑦 ) ∈ ℤ ∧ ( 𝑧 lcm 𝑛 ) ∈ ℤ ) )
37 dvdslcm ( ( ( lcm𝑦 ) ∈ ℤ ∧ ( 𝑧 lcm 𝑛 ) ∈ ℤ ) → ( ( lcm𝑦 ) ∥ ( ( lcm𝑦 ) lcm ( 𝑧 lcm 𝑛 ) ) ∧ ( 𝑧 lcm 𝑛 ) ∥ ( ( lcm𝑦 ) lcm ( 𝑧 lcm 𝑛 ) ) ) )
38 37 simpld ( ( ( lcm𝑦 ) ∈ ℤ ∧ ( 𝑧 lcm 𝑛 ) ∈ ℤ ) → ( lcm𝑦 ) ∥ ( ( lcm𝑦 ) lcm ( 𝑧 lcm 𝑛 ) ) )
39 36 38 syl ( ( 𝑖𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → ( lcm𝑦 ) ∥ ( ( lcm𝑦 ) lcm ( 𝑧 lcm 𝑛 ) ) )
40 16 21 28 34 39 dvdstrd ( ( 𝑖𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → 𝑖 ∥ ( ( lcm𝑦 ) lcm ( 𝑧 lcm 𝑛 ) ) )
41 4 adantl ( ( 𝑖𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → 𝑧 ∈ ℤ )
42 simprr ( ( 𝑖𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → 𝑛 ∈ ℤ )
43 lcmass ( ( ( lcm𝑦 ) ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( ( ( lcm𝑦 ) lcm 𝑧 ) lcm 𝑛 ) = ( ( lcm𝑦 ) lcm ( 𝑧 lcm 𝑛 ) ) )
44 21 41 42 43 syl3anc ( ( 𝑖𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → ( ( ( lcm𝑦 ) lcm 𝑧 ) lcm 𝑛 ) = ( ( lcm𝑦 ) lcm ( 𝑧 lcm 𝑛 ) ) )
45 40 44 breqtrrd ( ( 𝑖𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → 𝑖 ∥ ( ( ( lcm𝑦 ) lcm 𝑧 ) lcm 𝑛 ) )
46 45 ex ( 𝑖𝑦 → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → 𝑖 ∥ ( ( ( lcm𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ) )
47 elsni ( 𝑖 ∈ { 𝑧 } → 𝑖 = 𝑧 )
48 17 3adant1 ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm𝑦 ) ∈ ℕ0 )
49 48 nn0zd ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm𝑦 ) ∈ ℤ )
50 lcmcl ( ( ( lcm𝑦 ) ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( ( lcm𝑦 ) lcm 𝑧 ) ∈ ℕ0 )
51 49 3 50 syl2anc ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( ( lcm𝑦 ) lcm 𝑧 ) ∈ ℕ0 )
52 51 nn0zd ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( ( lcm𝑦 ) lcm 𝑧 ) ∈ ℤ )
53 52 adantr ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ( lcm𝑦 ) lcm 𝑧 ) ∈ ℤ )
54 lcmcl ( ( ( ( lcm𝑦 ) lcm 𝑧 ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( ( ( lcm𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ∈ ℕ0 )
55 52 54 sylan ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ( ( lcm𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ∈ ℕ0 )
56 55 nn0zd ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ( ( lcm𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ∈ ℤ )
57 19 3 jca ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( ( lcm𝑦 ) ∈ ℤ ∧ 𝑧 ∈ ℤ ) )
58 57 adantr ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ( lcm𝑦 ) ∈ ℤ ∧ 𝑧 ∈ ℤ ) )
59 dvdslcm ( ( ( lcm𝑦 ) ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( ( lcm𝑦 ) ∥ ( ( lcm𝑦 ) lcm 𝑧 ) ∧ 𝑧 ∥ ( ( lcm𝑦 ) lcm 𝑧 ) ) )
60 59 simprd ( ( ( lcm𝑦 ) ∈ ℤ ∧ 𝑧 ∈ ℤ ) → 𝑧 ∥ ( ( lcm𝑦 ) lcm 𝑧 ) )
61 58 60 syl ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → 𝑧 ∥ ( ( lcm𝑦 ) lcm 𝑧 ) )
62 dvdslcm ( ( ( ( lcm𝑦 ) lcm 𝑧 ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( ( ( lcm𝑦 ) lcm 𝑧 ) ∥ ( ( ( lcm𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ∧ 𝑛 ∥ ( ( ( lcm𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ) )
63 62 simpld ( ( ( ( lcm𝑦 ) lcm 𝑧 ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( ( lcm𝑦 ) lcm 𝑧 ) ∥ ( ( ( lcm𝑦 ) lcm 𝑧 ) lcm 𝑛 ) )
64 52 63 sylan ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ( lcm𝑦 ) lcm 𝑧 ) ∥ ( ( ( lcm𝑦 ) lcm 𝑧 ) lcm 𝑛 ) )
65 4 53 56 61 64 dvdstrd ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → 𝑧 ∥ ( ( ( lcm𝑦 ) lcm 𝑧 ) lcm 𝑛 ) )
66 breq1 ( 𝑖 = 𝑧 → ( 𝑖 ∥ ( ( ( lcm𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ↔ 𝑧 ∥ ( ( ( lcm𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ) )
67 65 66 syl5ibr ( 𝑖 = 𝑧 → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → 𝑖 ∥ ( ( ( lcm𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ) )
68 47 67 syl ( 𝑖 ∈ { 𝑧 } → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → 𝑖 ∥ ( ( ( lcm𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ) )
69 46 68 jaoi ( ( 𝑖𝑦𝑖 ∈ { 𝑧 } ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → 𝑖 ∥ ( ( ( lcm𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ) )
70 69 imp ( ( ( 𝑖𝑦𝑖 ∈ { 𝑧 } ) ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → 𝑖 ∥ ( ( ( lcm𝑦 ) lcm 𝑧 ) lcm 𝑛 ) )
71 oveq1 ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( lcm𝑦 ) lcm 𝑧 ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) = ( ( ( lcm𝑦 ) lcm 𝑧 ) lcm 𝑛 ) )
72 71 breq2d ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( lcm𝑦 ) lcm 𝑧 ) → ( 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ↔ 𝑖 ∥ ( ( ( lcm𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ) )
73 70 72 syl5ibrcom ( ( ( 𝑖𝑦𝑖 ∈ { 𝑧 } ) ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( lcm𝑦 ) lcm 𝑧 ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) )
74 12 73 syld ( ( ( 𝑖𝑦𝑖 ∈ { 𝑧 } ) ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) )
75 74 ex ( ( 𝑖𝑦𝑖 ∈ { 𝑧 } ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) )
76 2 75 sylbi ( 𝑖 ∈ ( 𝑦 ∪ { 𝑧 } ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) )
77 elsni ( 𝑖 ∈ { 𝑛 } → 𝑖 = 𝑛 )
78 simp2 ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → 𝑦 ⊆ ℤ )
79 snssi ( 𝑧 ∈ ℤ → { 𝑧 } ⊆ ℤ )
80 79 3ad2ant1 ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → { 𝑧 } ⊆ ℤ )
81 78 80 unssd ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ )
82 simp3 ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → 𝑦 ∈ Fin )
83 snfi { 𝑧 } ∈ Fin
84 unfi ( ( 𝑦 ∈ Fin ∧ { 𝑧 } ∈ Fin ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin )
85 82 83 84 sylancl ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin )
86 lcmfcl ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℕ0 )
87 81 85 86 syl2anc ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℕ0 )
88 87 nn0zd ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ )
89 88 anim1i ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) )
90 89 adantr ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) )
91 dvdslcm ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∧ 𝑛 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) )
92 90 91 syl ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∧ 𝑛 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) )
93 92 simprd ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) ) → 𝑛 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) )
94 breq1 ( 𝑖 = 𝑛 → ( 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ↔ 𝑛 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) )
95 93 94 syl5ibr ( 𝑖 = 𝑛 → ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) )
96 95 expd ( 𝑖 = 𝑛 → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) )
97 77 96 syl ( 𝑖 ∈ { 𝑛 } → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) )
98 76 97 jaoi ( ( 𝑖 ∈ ( 𝑦 ∪ { 𝑧 } ) ∨ 𝑖 ∈ { 𝑛 } ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) )
99 1 98 sylbi ( 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) )
100 99 com13 ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) )
101 100 expd ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) → ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( 𝑛 ∈ ℤ → ( 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) )
102 101 adantl ( ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚𝑦 𝑚𝑘 → ( lcm𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) ) → ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( 𝑛 ∈ ℤ → ( 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) )
103 102 impcom ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚𝑦 𝑚𝑘 → ( lcm𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) ) ) → ( 𝑛 ∈ ℤ → ( 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) )
104 103 impcom ( ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚𝑦 𝑚𝑘 → ( lcm𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) ) ) ) → ( 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) )
105 104 adantl ( ( ( 0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚𝑦 𝑚𝑘 → ( lcm𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) ) ) ) ) → ( 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) )
106 105 ralrimiv ( ( ( 0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚𝑦 𝑚𝑘 → ( lcm𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) ) ) ) ) → ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) )
107 lcmfunsnlem2lem1 ( ( ( 0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚𝑦 𝑚𝑘 → ( lcm𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) ) ) ) ) → ∀ 𝑘 ∈ ℕ ( ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖𝑘 → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ≤ 𝑘 ) )
108 89 adantr ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) )
109 81 adantr ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ )
110 85 adantr ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin )
111 df-nel ( 0 ∉ 𝑦 ↔ ¬ 0 ∈ 𝑦 )
112 111 biimpi ( 0 ∉ 𝑦 → ¬ 0 ∈ 𝑦 )
113 112 3ad2ant1 ( ( 0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ¬ 0 ∈ 𝑦 )
114 elsni ( 0 ∈ { 𝑧 } → 0 = 𝑧 )
115 114 eqcomd ( 0 ∈ { 𝑧 } → 𝑧 = 0 )
116 115 necon3ai ( 𝑧 ≠ 0 → ¬ 0 ∈ { 𝑧 } )
117 116 3ad2ant2 ( ( 0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ¬ 0 ∈ { 𝑧 } )
118 ioran ( ¬ ( 0 ∈ 𝑦 ∨ 0 ∈ { 𝑧 } ) ↔ ( ¬ 0 ∈ 𝑦 ∧ ¬ 0 ∈ { 𝑧 } ) )
119 113 117 118 sylanbrc ( ( 0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ¬ ( 0 ∈ 𝑦 ∨ 0 ∈ { 𝑧 } ) )
120 elun ( 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ↔ ( 0 ∈ 𝑦 ∨ 0 ∈ { 𝑧 } ) )
121 119 120 sylnibr ( ( 0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ¬ 0 ∈ ( 𝑦 ∪ { 𝑧 } ) )
122 df-nel ( 0 ∉ ( 𝑦 ∪ { 𝑧 } ) ↔ ¬ 0 ∈ ( 𝑦 ∪ { 𝑧 } ) )
123 121 122 sylibr ( ( 0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → 0 ∉ ( 𝑦 ∪ { 𝑧 } ) )
124 lcmfn0cl ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ∧ 0 ∉ ( 𝑦 ∪ { 𝑧 } ) ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℕ )
125 109 110 123 124 syl2an3an ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℕ )
126 125 nnne0d ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ≠ 0 )
127 126 neneqd ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ¬ ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = 0 )
128 neneq ( 𝑛 ≠ 0 → ¬ 𝑛 = 0 )
129 128 3ad2ant3 ( ( 0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ¬ 𝑛 = 0 )
130 129 adantl ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ¬ 𝑛 = 0 )
131 ioran ( ¬ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = 0 ∨ 𝑛 = 0 ) ↔ ( ¬ ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = 0 ∧ ¬ 𝑛 = 0 ) )
132 127 130 131 sylanbrc ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ¬ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = 0 ∨ 𝑛 = 0 ) )
133 lcmn0cl ( ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ ¬ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = 0 ∨ 𝑛 = 0 ) ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∈ ℕ )
134 108 132 133 syl2anc ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∈ ℕ )
135 snssi ( 𝑛 ∈ ℤ → { 𝑛 } ⊆ ℤ )
136 135 adantl ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → { 𝑛 } ⊆ ℤ )
137 109 136 unssd ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ )
138 137 adantr ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ )
139 83 84 mpan2 ( 𝑦 ∈ Fin → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin )
140 snfi { 𝑛 } ∈ Fin
141 unfi ( ( ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ∧ { 𝑛 } ∈ Fin ) → ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin )
142 139 140 141 sylancl ( 𝑦 ∈ Fin → ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin )
143 142 3ad2ant3 ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin )
144 143 adantr ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin )
145 144 adantr ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin )
146 elun ( 0 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ↔ ( 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ∨ 0 ∈ { 𝑛 } ) )
147 nnel ( ¬ 0 ∉ 𝑦 ↔ 0 ∈ 𝑦 )
148 147 biimpri ( 0 ∈ 𝑦 → ¬ 0 ∉ 𝑦 )
149 148 3mix1d ( 0 ∈ 𝑦 → ( ¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0 ) )
150 nne ( ¬ 𝑧 ≠ 0 ↔ 𝑧 = 0 )
151 115 150 sylibr ( 0 ∈ { 𝑧 } → ¬ 𝑧 ≠ 0 )
152 151 3mix2d ( 0 ∈ { 𝑧 } → ( ¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0 ) )
153 149 152 jaoi ( ( 0 ∈ 𝑦 ∨ 0 ∈ { 𝑧 } ) → ( ¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0 ) )
154 120 153 sylbi ( 0 ∈ ( 𝑦 ∪ { 𝑧 } ) → ( ¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0 ) )
155 elsni ( 0 ∈ { 𝑛 } → 0 = 𝑛 )
156 155 eqcomd ( 0 ∈ { 𝑛 } → 𝑛 = 0 )
157 nne ( ¬ 𝑛 ≠ 0 ↔ 𝑛 = 0 )
158 156 157 sylibr ( 0 ∈ { 𝑛 } → ¬ 𝑛 ≠ 0 )
159 158 3mix3d ( 0 ∈ { 𝑛 } → ( ¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0 ) )
160 154 159 jaoi ( ( 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ∨ 0 ∈ { 𝑛 } ) → ( ¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0 ) )
161 146 160 sylbi ( 0 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) → ( ¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0 ) )
162 3ianor ( ¬ ( 0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ↔ ( ¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0 ) )
163 161 162 sylibr ( 0 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) → ¬ ( 0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) )
164 163 con2i ( ( 0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ¬ 0 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) )
165 df-nel ( 0 ∉ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ↔ ¬ 0 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) )
166 164 165 sylibr ( ( 0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → 0 ∉ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) )
167 166 adantl ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → 0 ∉ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) )
168 138 145 167 3jca ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ( ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ ∧ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin ∧ 0 ∉ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) )
169 134 168 jca ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∈ ℕ ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ ∧ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin ∧ 0 ∉ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) ) )
170 169 ex ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ( 0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∈ ℕ ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ ∧ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin ∧ 0 ∉ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) ) ) )
171 170 ex ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( 𝑛 ∈ ℤ → ( ( 0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∈ ℕ ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ ∧ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin ∧ 0 ∉ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) ) ) ) )
172 171 adantr ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚𝑦 𝑚𝑘 → ( lcm𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) ) ) → ( 𝑛 ∈ ℤ → ( ( 0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∈ ℕ ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ ∧ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin ∧ 0 ∉ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) ) ) ) )
173 172 impcom ( ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚𝑦 𝑚𝑘 → ( lcm𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) ) ) ) → ( ( 0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∈ ℕ ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ ∧ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin ∧ 0 ∉ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) ) ) )
174 173 impcom ( ( ( 0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚𝑦 𝑚𝑘 → ( lcm𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) ) ) ) ) → ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∈ ℕ ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ ∧ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin ∧ 0 ∉ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) ) )
175 lcmf ( ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∈ ℕ ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ ∧ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin ∧ 0 ∉ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) ) → ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) = ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) ↔ ( ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∧ ∀ 𝑘 ∈ ℕ ( ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖𝑘 → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ≤ 𝑘 ) ) ) )
176 174 175 syl ( ( ( 0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚𝑦 𝑚𝑘 → ( lcm𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) ) ) ) ) → ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) = ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) ↔ ( ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∧ ∀ 𝑘 ∈ ℕ ( ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖𝑘 → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ≤ 𝑘 ) ) ) )
177 106 107 176 mpbir2and ( ( ( 0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚𝑦 𝑚𝑘 → ( lcm𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) ) ) ) ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) = ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) )
178 177 eqcomd ( ( ( 0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚𝑦 𝑚𝑘 → ( lcm𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm𝑦 ) lcm 𝑛 ) ) ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) )