| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvdslcm |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) ) |
| 2 |
1
|
simpld |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ) |
| 3 |
2
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 lcm 𝑁 ) = ( 𝑀 gcd 𝑁 ) ) → 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ) |
| 4 |
|
gcddvds |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ) |
| 5 |
4
|
simprd |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) |
| 6 |
|
breq1 |
⊢ ( ( 𝑀 lcm 𝑁 ) = ( 𝑀 gcd 𝑁 ) → ( ( 𝑀 lcm 𝑁 ) ∥ 𝑁 ↔ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ) |
| 7 |
5 6
|
syl5ibrcom |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 lcm 𝑁 ) = ( 𝑀 gcd 𝑁 ) → ( 𝑀 lcm 𝑁 ) ∥ 𝑁 ) ) |
| 8 |
7
|
imp |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 lcm 𝑁 ) = ( 𝑀 gcd 𝑁 ) ) → ( 𝑀 lcm 𝑁 ) ∥ 𝑁 ) |
| 9 |
|
lcmcl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm 𝑁 ) ∈ ℕ0 ) |
| 10 |
9
|
nn0zd |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm 𝑁 ) ∈ ℤ ) |
| 11 |
|
dvdstr |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑀 lcm 𝑁 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ ( 𝑀 lcm 𝑁 ) ∥ 𝑁 ) → 𝑀 ∥ 𝑁 ) ) |
| 12 |
10 11
|
syl3an2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ ( 𝑀 lcm 𝑁 ) ∥ 𝑁 ) → 𝑀 ∥ 𝑁 ) ) |
| 13 |
12
|
3com12 |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ ( 𝑀 lcm 𝑁 ) ∥ 𝑁 ) → 𝑀 ∥ 𝑁 ) ) |
| 14 |
13
|
3expb |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ ( 𝑀 lcm 𝑁 ) ∥ 𝑁 ) → 𝑀 ∥ 𝑁 ) ) |
| 15 |
14
|
anidms |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ ( 𝑀 lcm 𝑁 ) ∥ 𝑁 ) → 𝑀 ∥ 𝑁 ) ) |
| 16 |
15
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 lcm 𝑁 ) = ( 𝑀 gcd 𝑁 ) ) → ( ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ ( 𝑀 lcm 𝑁 ) ∥ 𝑁 ) → 𝑀 ∥ 𝑁 ) ) |
| 17 |
3 8 16
|
mp2and |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 lcm 𝑁 ) = ( 𝑀 gcd 𝑁 ) ) → 𝑀 ∥ 𝑁 ) |
| 18 |
|
absdvdsb |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ ( abs ‘ 𝑀 ) ∥ 𝑁 ) ) |
| 19 |
|
zabscl |
⊢ ( 𝑀 ∈ ℤ → ( abs ‘ 𝑀 ) ∈ ℤ ) |
| 20 |
|
dvdsabsb |
⊢ ( ( ( abs ‘ 𝑀 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ 𝑀 ) ∥ 𝑁 ↔ ( abs ‘ 𝑀 ) ∥ ( abs ‘ 𝑁 ) ) ) |
| 21 |
19 20
|
sylan |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ 𝑀 ) ∥ 𝑁 ↔ ( abs ‘ 𝑀 ) ∥ ( abs ‘ 𝑁 ) ) ) |
| 22 |
18 21
|
bitrd |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ ( abs ‘ 𝑀 ) ∥ ( abs ‘ 𝑁 ) ) ) |
| 23 |
22
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 lcm 𝑁 ) = ( 𝑀 gcd 𝑁 ) ) → ( 𝑀 ∥ 𝑁 ↔ ( abs ‘ 𝑀 ) ∥ ( abs ‘ 𝑁 ) ) ) |
| 24 |
17 23
|
mpbid |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 lcm 𝑁 ) = ( 𝑀 gcd 𝑁 ) ) → ( abs ‘ 𝑀 ) ∥ ( abs ‘ 𝑁 ) ) |
| 25 |
1
|
simprd |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) |
| 26 |
25
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 lcm 𝑁 ) = ( 𝑀 gcd 𝑁 ) ) → 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) |
| 27 |
4
|
simpld |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ) |
| 28 |
|
breq1 |
⊢ ( ( 𝑀 lcm 𝑁 ) = ( 𝑀 gcd 𝑁 ) → ( ( 𝑀 lcm 𝑁 ) ∥ 𝑀 ↔ ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ) ) |
| 29 |
27 28
|
syl5ibrcom |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 lcm 𝑁 ) = ( 𝑀 gcd 𝑁 ) → ( 𝑀 lcm 𝑁 ) ∥ 𝑀 ) ) |
| 30 |
29
|
imp |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 lcm 𝑁 ) = ( 𝑀 gcd 𝑁 ) ) → ( 𝑀 lcm 𝑁 ) ∥ 𝑀 ) |
| 31 |
|
dvdstr |
⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝑀 lcm 𝑁 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ∧ ( 𝑀 lcm 𝑁 ) ∥ 𝑀 ) → 𝑁 ∥ 𝑀 ) ) |
| 32 |
10 31
|
syl3an2 |
⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 ∈ ℤ ) → ( ( 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ∧ ( 𝑀 lcm 𝑁 ) ∥ 𝑀 ) → 𝑁 ∥ 𝑀 ) ) |
| 33 |
32
|
3coml |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ∧ ( 𝑀 lcm 𝑁 ) ∥ 𝑀 ) → 𝑁 ∥ 𝑀 ) ) |
| 34 |
33
|
3expb |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ∧ ( 𝑀 lcm 𝑁 ) ∥ 𝑀 ) → 𝑁 ∥ 𝑀 ) ) |
| 35 |
34
|
anidms |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ∧ ( 𝑀 lcm 𝑁 ) ∥ 𝑀 ) → 𝑁 ∥ 𝑀 ) ) |
| 36 |
35
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 lcm 𝑁 ) = ( 𝑀 gcd 𝑁 ) ) → ( ( 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ∧ ( 𝑀 lcm 𝑁 ) ∥ 𝑀 ) → 𝑁 ∥ 𝑀 ) ) |
| 37 |
26 30 36
|
mp2and |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 lcm 𝑁 ) = ( 𝑀 gcd 𝑁 ) ) → 𝑁 ∥ 𝑀 ) |
| 38 |
|
absdvdsb |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑁 ∥ 𝑀 ↔ ( abs ‘ 𝑁 ) ∥ 𝑀 ) ) |
| 39 |
|
zabscl |
⊢ ( 𝑁 ∈ ℤ → ( abs ‘ 𝑁 ) ∈ ℤ ) |
| 40 |
|
dvdsabsb |
⊢ ( ( ( abs ‘ 𝑁 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( abs ‘ 𝑁 ) ∥ 𝑀 ↔ ( abs ‘ 𝑁 ) ∥ ( abs ‘ 𝑀 ) ) ) |
| 41 |
39 40
|
sylan |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( abs ‘ 𝑁 ) ∥ 𝑀 ↔ ( abs ‘ 𝑁 ) ∥ ( abs ‘ 𝑀 ) ) ) |
| 42 |
38 41
|
bitrd |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑁 ∥ 𝑀 ↔ ( abs ‘ 𝑁 ) ∥ ( abs ‘ 𝑀 ) ) ) |
| 43 |
42
|
ancoms |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∥ 𝑀 ↔ ( abs ‘ 𝑁 ) ∥ ( abs ‘ 𝑀 ) ) ) |
| 44 |
43
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 lcm 𝑁 ) = ( 𝑀 gcd 𝑁 ) ) → ( 𝑁 ∥ 𝑀 ↔ ( abs ‘ 𝑁 ) ∥ ( abs ‘ 𝑀 ) ) ) |
| 45 |
37 44
|
mpbid |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 lcm 𝑁 ) = ( 𝑀 gcd 𝑁 ) ) → ( abs ‘ 𝑁 ) ∥ ( abs ‘ 𝑀 ) ) |
| 46 |
|
nn0abscl |
⊢ ( 𝑀 ∈ ℤ → ( abs ‘ 𝑀 ) ∈ ℕ0 ) |
| 47 |
|
nn0abscl |
⊢ ( 𝑁 ∈ ℤ → ( abs ‘ 𝑁 ) ∈ ℕ0 ) |
| 48 |
46 47
|
anim12i |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ 𝑀 ) ∈ ℕ0 ∧ ( abs ‘ 𝑁 ) ∈ ℕ0 ) ) |
| 49 |
|
dvdseq |
⊢ ( ( ( ( abs ‘ 𝑀 ) ∈ ℕ0 ∧ ( abs ‘ 𝑁 ) ∈ ℕ0 ) ∧ ( ( abs ‘ 𝑀 ) ∥ ( abs ‘ 𝑁 ) ∧ ( abs ‘ 𝑁 ) ∥ ( abs ‘ 𝑀 ) ) ) → ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) |
| 50 |
48 49
|
sylan |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( abs ‘ 𝑀 ) ∥ ( abs ‘ 𝑁 ) ∧ ( abs ‘ 𝑁 ) ∥ ( abs ‘ 𝑀 ) ) ) → ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) |
| 51 |
50
|
ex |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( abs ‘ 𝑀 ) ∥ ( abs ‘ 𝑁 ) ∧ ( abs ‘ 𝑁 ) ∥ ( abs ‘ 𝑀 ) ) → ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) ) |
| 52 |
51
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 lcm 𝑁 ) = ( 𝑀 gcd 𝑁 ) ) → ( ( ( abs ‘ 𝑀 ) ∥ ( abs ‘ 𝑁 ) ∧ ( abs ‘ 𝑁 ) ∥ ( abs ‘ 𝑀 ) ) → ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) ) |
| 53 |
24 45 52
|
mp2and |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 lcm 𝑁 ) = ( 𝑀 gcd 𝑁 ) ) → ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) |
| 54 |
|
lcmid |
⊢ ( ( abs ‘ 𝑀 ) ∈ ℤ → ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑀 ) ) = ( abs ‘ ( abs ‘ 𝑀 ) ) ) |
| 55 |
19 54
|
syl |
⊢ ( 𝑀 ∈ ℤ → ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑀 ) ) = ( abs ‘ ( abs ‘ 𝑀 ) ) ) |
| 56 |
|
gcdid |
⊢ ( ( abs ‘ 𝑀 ) ∈ ℤ → ( ( abs ‘ 𝑀 ) gcd ( abs ‘ 𝑀 ) ) = ( abs ‘ ( abs ‘ 𝑀 ) ) ) |
| 57 |
19 56
|
syl |
⊢ ( 𝑀 ∈ ℤ → ( ( abs ‘ 𝑀 ) gcd ( abs ‘ 𝑀 ) ) = ( abs ‘ ( abs ‘ 𝑀 ) ) ) |
| 58 |
55 57
|
eqtr4d |
⊢ ( 𝑀 ∈ ℤ → ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑀 ) ) = ( ( abs ‘ 𝑀 ) gcd ( abs ‘ 𝑀 ) ) ) |
| 59 |
|
oveq2 |
⊢ ( ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) → ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑀 ) ) = ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑁 ) ) ) |
| 60 |
|
oveq2 |
⊢ ( ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) → ( ( abs ‘ 𝑀 ) gcd ( abs ‘ 𝑀 ) ) = ( ( abs ‘ 𝑀 ) gcd ( abs ‘ 𝑁 ) ) ) |
| 61 |
59 60
|
eqeq12d |
⊢ ( ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) → ( ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑀 ) ) = ( ( abs ‘ 𝑀 ) gcd ( abs ‘ 𝑀 ) ) ↔ ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑁 ) ) = ( ( abs ‘ 𝑀 ) gcd ( abs ‘ 𝑁 ) ) ) ) |
| 62 |
58 61
|
syl5ibcom |
⊢ ( 𝑀 ∈ ℤ → ( ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) → ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑁 ) ) = ( ( abs ‘ 𝑀 ) gcd ( abs ‘ 𝑁 ) ) ) ) |
| 63 |
62
|
imp |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) → ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑁 ) ) = ( ( abs ‘ 𝑀 ) gcd ( abs ‘ 𝑁 ) ) ) |
| 64 |
63
|
adantlr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) → ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑁 ) ) = ( ( abs ‘ 𝑀 ) gcd ( abs ‘ 𝑁 ) ) ) |
| 65 |
|
lcmabs |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑁 ) ) = ( 𝑀 lcm 𝑁 ) ) |
| 66 |
|
gcdabs |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ 𝑀 ) gcd ( abs ‘ 𝑁 ) ) = ( 𝑀 gcd 𝑁 ) ) |
| 67 |
65 66
|
eqeq12d |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑁 ) ) = ( ( abs ‘ 𝑀 ) gcd ( abs ‘ 𝑁 ) ) ↔ ( 𝑀 lcm 𝑁 ) = ( 𝑀 gcd 𝑁 ) ) ) |
| 68 |
67
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) → ( ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑁 ) ) = ( ( abs ‘ 𝑀 ) gcd ( abs ‘ 𝑁 ) ) ↔ ( 𝑀 lcm 𝑁 ) = ( 𝑀 gcd 𝑁 ) ) ) |
| 69 |
64 68
|
mpbid |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) → ( 𝑀 lcm 𝑁 ) = ( 𝑀 gcd 𝑁 ) ) |
| 70 |
53 69
|
impbida |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 lcm 𝑁 ) = ( 𝑀 gcd 𝑁 ) ↔ ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) ) |