| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnmulcl | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑀  ·  𝑁 )  ∈  ℕ ) | 
						
							| 2 | 1 | nnred | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑀  ·  𝑁 )  ∈  ℝ ) | 
						
							| 3 |  | nnz | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℤ ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  𝑀  ∈  ℤ ) | 
						
							| 5 | 4 | zred | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  𝑀  ∈  ℝ ) | 
						
							| 6 |  | nnz | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℤ ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  𝑁  ∈  ℤ ) | 
						
							| 8 | 7 | zred | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  𝑁  ∈  ℝ ) | 
						
							| 9 |  | 0red | ⊢ ( 𝑀  ∈  ℕ  →  0  ∈  ℝ ) | 
						
							| 10 |  | nnre | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℝ ) | 
						
							| 11 |  | nngt0 | ⊢ ( 𝑀  ∈  ℕ  →  0  <  𝑀 ) | 
						
							| 12 | 9 10 11 | ltled | ⊢ ( 𝑀  ∈  ℕ  →  0  ≤  𝑀 ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  0  ≤  𝑀 ) | 
						
							| 14 |  | 0red | ⊢ ( 𝑁  ∈  ℕ  →  0  ∈  ℝ ) | 
						
							| 15 |  | nnre | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℝ ) | 
						
							| 16 |  | nngt0 | ⊢ ( 𝑁  ∈  ℕ  →  0  <  𝑁 ) | 
						
							| 17 | 14 15 16 | ltled | ⊢ ( 𝑁  ∈  ℕ  →  0  ≤  𝑁 ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  0  ≤  𝑁 ) | 
						
							| 19 | 5 8 13 18 | mulge0d | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  0  ≤  ( 𝑀  ·  𝑁 ) ) | 
						
							| 20 | 2 19 | absidd | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( abs ‘ ( 𝑀  ·  𝑁 ) )  =  ( 𝑀  ·  𝑁 ) ) | 
						
							| 21 | 3 6 | anim12i | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ ) ) | 
						
							| 22 |  | nnne0 | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ≠  0 ) | 
						
							| 23 | 22 | neneqd | ⊢ ( 𝑀  ∈  ℕ  →  ¬  𝑀  =  0 ) | 
						
							| 24 |  | nnne0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ≠  0 ) | 
						
							| 25 | 24 | neneqd | ⊢ ( 𝑁  ∈  ℕ  →  ¬  𝑁  =  0 ) | 
						
							| 26 | 23 25 | anim12i | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ¬  𝑀  =  0  ∧  ¬  𝑁  =  0 ) ) | 
						
							| 27 |  | ioran | ⊢ ( ¬  ( 𝑀  =  0  ∨  𝑁  =  0 )  ↔  ( ¬  𝑀  =  0  ∧  ¬  𝑁  =  0 ) ) | 
						
							| 28 | 26 27 | sylibr | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ¬  ( 𝑀  =  0  ∨  𝑁  =  0 ) ) | 
						
							| 29 |  | lcmn0val | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  ( 𝑀  lcm  𝑁 )  =  inf ( { 𝑥  ∈  ℕ  ∣  ( 𝑀  ∥  𝑥  ∧  𝑁  ∥  𝑥 ) } ,  ℝ ,   <  ) ) | 
						
							| 30 | 21 28 29 | syl2anc | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑀  lcm  𝑁 )  =  inf ( { 𝑥  ∈  ℕ  ∣  ( 𝑀  ∥  𝑥  ∧  𝑁  ∥  𝑥 ) } ,  ℝ ,   <  ) ) | 
						
							| 31 |  | ltso | ⊢  <   Or  ℝ | 
						
							| 32 | 31 | a1i | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →   <   Or  ℝ ) | 
						
							| 33 |  | gcddvds | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑀  gcd  𝑁 )  ∥  𝑀  ∧  ( 𝑀  gcd  𝑁 )  ∥  𝑁 ) ) | 
						
							| 34 | 33 | simpld | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  gcd  𝑁 )  ∥  𝑀 ) | 
						
							| 35 |  | gcdcl | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  gcd  𝑁 )  ∈  ℕ0 ) | 
						
							| 36 | 35 | nn0zd | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  gcd  𝑁 )  ∈  ℤ ) | 
						
							| 37 |  | dvdsmultr1 | ⊢ ( ( ( 𝑀  gcd  𝑁 )  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑀  gcd  𝑁 )  ∥  𝑀  →  ( 𝑀  gcd  𝑁 )  ∥  ( 𝑀  ·  𝑁 ) ) ) | 
						
							| 38 | 37 | 3expb | ⊢ ( ( ( 𝑀  gcd  𝑁 )  ∈  ℤ  ∧  ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  →  ( ( 𝑀  gcd  𝑁 )  ∥  𝑀  →  ( 𝑀  gcd  𝑁 )  ∥  ( 𝑀  ·  𝑁 ) ) ) | 
						
							| 39 | 36 38 | mpancom | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑀  gcd  𝑁 )  ∥  𝑀  →  ( 𝑀  gcd  𝑁 )  ∥  ( 𝑀  ·  𝑁 ) ) ) | 
						
							| 40 | 34 39 | mpd | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  gcd  𝑁 )  ∥  ( 𝑀  ·  𝑁 ) ) | 
						
							| 41 | 21 40 | syl | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑀  gcd  𝑁 )  ∥  ( 𝑀  ·  𝑁 ) ) | 
						
							| 42 |  | gcdnncl | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑀  gcd  𝑁 )  ∈  ℕ ) | 
						
							| 43 |  | nndivdvds | ⊢ ( ( ( 𝑀  ·  𝑁 )  ∈  ℕ  ∧  ( 𝑀  gcd  𝑁 )  ∈  ℕ )  →  ( ( 𝑀  gcd  𝑁 )  ∥  ( 𝑀  ·  𝑁 )  ↔  ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  ∈  ℕ ) ) | 
						
							| 44 | 1 42 43 | syl2anc | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑀  gcd  𝑁 )  ∥  ( 𝑀  ·  𝑁 )  ↔  ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  ∈  ℕ ) ) | 
						
							| 45 | 41 44 | mpbid | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  ∈  ℕ ) | 
						
							| 46 | 45 | nnred | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  ∈  ℝ ) | 
						
							| 47 |  | breq2 | ⊢ ( 𝑥  =  ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  →  ( 𝑀  ∥  𝑥  ↔  𝑀  ∥  ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) ) ) ) | 
						
							| 48 |  | breq2 | ⊢ ( 𝑥  =  ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  →  ( 𝑁  ∥  𝑥  ↔  𝑁  ∥  ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) ) ) ) | 
						
							| 49 | 47 48 | anbi12d | ⊢ ( 𝑥  =  ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  →  ( ( 𝑀  ∥  𝑥  ∧  𝑁  ∥  𝑥 )  ↔  ( 𝑀  ∥  ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  ∧  𝑁  ∥  ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) ) ) ) ) | 
						
							| 50 | 33 | simprd | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  gcd  𝑁 )  ∥  𝑁 ) | 
						
							| 51 | 21 50 | syl | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑀  gcd  𝑁 )  ∥  𝑁 ) | 
						
							| 52 | 21 36 | syl | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑀  gcd  𝑁 )  ∈  ℤ ) | 
						
							| 53 | 42 | nnne0d | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑀  gcd  𝑁 )  ≠  0 ) | 
						
							| 54 |  | dvdsval2 | ⊢ ( ( ( 𝑀  gcd  𝑁 )  ∈  ℤ  ∧  ( 𝑀  gcd  𝑁 )  ≠  0  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑀  gcd  𝑁 )  ∥  𝑁  ↔  ( 𝑁  /  ( 𝑀  gcd  𝑁 ) )  ∈  ℤ ) ) | 
						
							| 55 | 52 53 7 54 | syl3anc | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑀  gcd  𝑁 )  ∥  𝑁  ↔  ( 𝑁  /  ( 𝑀  gcd  𝑁 ) )  ∈  ℤ ) ) | 
						
							| 56 | 51 55 | mpbid | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑁  /  ( 𝑀  gcd  𝑁 ) )  ∈  ℤ ) | 
						
							| 57 |  | dvdsmul1 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  ( 𝑁  /  ( 𝑀  gcd  𝑁 ) )  ∈  ℤ )  →  𝑀  ∥  ( 𝑀  ·  ( 𝑁  /  ( 𝑀  gcd  𝑁 ) ) ) ) | 
						
							| 58 | 4 56 57 | syl2anc | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  𝑀  ∥  ( 𝑀  ·  ( 𝑁  /  ( 𝑀  gcd  𝑁 ) ) ) ) | 
						
							| 59 |  | nncn | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℂ ) | 
						
							| 60 | 59 | adantr | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  𝑀  ∈  ℂ ) | 
						
							| 61 |  | nncn | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℂ ) | 
						
							| 62 | 61 | adantl | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  𝑁  ∈  ℂ ) | 
						
							| 63 | 42 | nncnd | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑀  gcd  𝑁 )  ∈  ℂ ) | 
						
							| 64 | 60 62 63 53 | divassd | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  =  ( 𝑀  ·  ( 𝑁  /  ( 𝑀  gcd  𝑁 ) ) ) ) | 
						
							| 65 | 58 64 | breqtrrd | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  𝑀  ∥  ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) ) ) | 
						
							| 66 | 21 34 | syl | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑀  gcd  𝑁 )  ∥  𝑀 ) | 
						
							| 67 |  | dvdsval2 | ⊢ ( ( ( 𝑀  gcd  𝑁 )  ∈  ℤ  ∧  ( 𝑀  gcd  𝑁 )  ≠  0  ∧  𝑀  ∈  ℤ )  →  ( ( 𝑀  gcd  𝑁 )  ∥  𝑀  ↔  ( 𝑀  /  ( 𝑀  gcd  𝑁 ) )  ∈  ℤ ) ) | 
						
							| 68 | 52 53 4 67 | syl3anc | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑀  gcd  𝑁 )  ∥  𝑀  ↔  ( 𝑀  /  ( 𝑀  gcd  𝑁 ) )  ∈  ℤ ) ) | 
						
							| 69 | 66 68 | mpbid | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑀  /  ( 𝑀  gcd  𝑁 ) )  ∈  ℤ ) | 
						
							| 70 |  | dvdsmul1 | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ( 𝑀  /  ( 𝑀  gcd  𝑁 ) )  ∈  ℤ )  →  𝑁  ∥  ( 𝑁  ·  ( 𝑀  /  ( 𝑀  gcd  𝑁 ) ) ) ) | 
						
							| 71 | 7 69 70 | syl2anc | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  𝑁  ∥  ( 𝑁  ·  ( 𝑀  /  ( 𝑀  gcd  𝑁 ) ) ) ) | 
						
							| 72 | 60 62 | mulcomd | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑀  ·  𝑁 )  =  ( 𝑁  ·  𝑀 ) ) | 
						
							| 73 | 72 | oveq1d | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  =  ( ( 𝑁  ·  𝑀 )  /  ( 𝑀  gcd  𝑁 ) ) ) | 
						
							| 74 | 62 60 63 53 | divassd | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑁  ·  𝑀 )  /  ( 𝑀  gcd  𝑁 ) )  =  ( 𝑁  ·  ( 𝑀  /  ( 𝑀  gcd  𝑁 ) ) ) ) | 
						
							| 75 | 73 74 | eqtrd | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  =  ( 𝑁  ·  ( 𝑀  /  ( 𝑀  gcd  𝑁 ) ) ) ) | 
						
							| 76 | 71 75 | breqtrrd | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  𝑁  ∥  ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) ) ) | 
						
							| 77 | 65 76 | jca | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑀  ∥  ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  ∧  𝑁  ∥  ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) ) ) ) | 
						
							| 78 | 49 45 77 | elrabd | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  ∈  { 𝑥  ∈  ℕ  ∣  ( 𝑀  ∥  𝑥  ∧  𝑁  ∥  𝑥 ) } ) | 
						
							| 79 | 46 | adantr | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  { 𝑥  ∈  ℕ  ∣  ( 𝑀  ∥  𝑥  ∧  𝑁  ∥  𝑥 ) } )  →  ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  ∈  ℝ ) | 
						
							| 80 |  | elrabi | ⊢ ( 𝑛  ∈  { 𝑥  ∈  ℕ  ∣  ( 𝑀  ∥  𝑥  ∧  𝑁  ∥  𝑥 ) }  →  𝑛  ∈  ℕ ) | 
						
							| 81 | 80 | nnred | ⊢ ( 𝑛  ∈  { 𝑥  ∈  ℕ  ∣  ( 𝑀  ∥  𝑥  ∧  𝑁  ∥  𝑥 ) }  →  𝑛  ∈  ℝ ) | 
						
							| 82 | 81 | adantl | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  { 𝑥  ∈  ℕ  ∣  ( 𝑀  ∥  𝑥  ∧  𝑁  ∥  𝑥 ) } )  →  𝑛  ∈  ℝ ) | 
						
							| 83 |  | breq2 | ⊢ ( 𝑥  =  𝑛  →  ( 𝑀  ∥  𝑥  ↔  𝑀  ∥  𝑛 ) ) | 
						
							| 84 |  | breq2 | ⊢ ( 𝑥  =  𝑛  →  ( 𝑁  ∥  𝑥  ↔  𝑁  ∥  𝑛 ) ) | 
						
							| 85 | 83 84 | anbi12d | ⊢ ( 𝑥  =  𝑛  →  ( ( 𝑀  ∥  𝑥  ∧  𝑁  ∥  𝑥 )  ↔  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) ) ) | 
						
							| 86 | 85 | elrab | ⊢ ( 𝑛  ∈  { 𝑥  ∈  ℕ  ∣  ( 𝑀  ∥  𝑥  ∧  𝑁  ∥  𝑥 ) }  ↔  ( 𝑛  ∈  ℕ  ∧  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) ) ) | 
						
							| 87 |  | bezout | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℤ ( 𝑀  gcd  𝑁 )  =  ( ( 𝑀  ·  𝑥 )  +  ( 𝑁  ·  𝑦 ) ) ) | 
						
							| 88 | 21 87 | syl | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℤ ( 𝑀  gcd  𝑁 )  =  ( ( 𝑀  ·  𝑥 )  +  ( 𝑁  ·  𝑦 ) ) ) | 
						
							| 89 | 88 | adantr | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) ) )  →  ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℤ ( 𝑀  gcd  𝑁 )  =  ( ( 𝑀  ·  𝑥 )  +  ( 𝑁  ·  𝑦 ) ) ) | 
						
							| 90 |  | nncn | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℂ ) | 
						
							| 91 | 90 | ad2antlr | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  𝑛  ∈  ℂ ) | 
						
							| 92 | 1 | nncnd | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑀  ·  𝑁 )  ∈  ℂ ) | 
						
							| 93 | 92 | ad2antrr | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( 𝑀  ·  𝑁 )  ∈  ℂ ) | 
						
							| 94 | 63 | ad2antrr | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( 𝑀  gcd  𝑁 )  ∈  ℂ ) | 
						
							| 95 | 60 | ad2antrr | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  𝑀  ∈  ℂ ) | 
						
							| 96 | 61 | ad3antlr | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  𝑁  ∈  ℂ ) | 
						
							| 97 | 22 | ad3antrrr | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  𝑀  ≠  0 ) | 
						
							| 98 | 24 | ad3antlr | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  𝑁  ≠  0 ) | 
						
							| 99 | 95 96 97 98 | mulne0d | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( 𝑀  ·  𝑁 )  ≠  0 ) | 
						
							| 100 | 53 | ad2antrr | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( 𝑀  gcd  𝑁 )  ≠  0 ) | 
						
							| 101 | 91 93 94 99 100 | divdiv2d | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( 𝑛  /  ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) ) )  =  ( ( 𝑛  ·  ( 𝑀  gcd  𝑁 ) )  /  ( 𝑀  ·  𝑁 ) ) ) | 
						
							| 102 | 101 | adantr | ⊢ ( ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑀  gcd  𝑁 )  =  ( ( 𝑀  ·  𝑥 )  +  ( 𝑁  ·  𝑦 ) ) )  →  ( 𝑛  /  ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) ) )  =  ( ( 𝑛  ·  ( 𝑀  gcd  𝑁 ) )  /  ( 𝑀  ·  𝑁 ) ) ) | 
						
							| 103 |  | oveq2 | ⊢ ( ( 𝑀  gcd  𝑁 )  =  ( ( 𝑀  ·  𝑥 )  +  ( 𝑁  ·  𝑦 ) )  →  ( 𝑛  ·  ( 𝑀  gcd  𝑁 ) )  =  ( 𝑛  ·  ( ( 𝑀  ·  𝑥 )  +  ( 𝑁  ·  𝑦 ) ) ) ) | 
						
							| 104 | 103 | oveq1d | ⊢ ( ( 𝑀  gcd  𝑁 )  =  ( ( 𝑀  ·  𝑥 )  +  ( 𝑁  ·  𝑦 ) )  →  ( ( 𝑛  ·  ( 𝑀  gcd  𝑁 ) )  /  ( 𝑀  ·  𝑁 ) )  =  ( ( 𝑛  ·  ( ( 𝑀  ·  𝑥 )  +  ( 𝑁  ·  𝑦 ) ) )  /  ( 𝑀  ·  𝑁 ) ) ) | 
						
							| 105 |  | zcn | ⊢ ( 𝑥  ∈  ℤ  →  𝑥  ∈  ℂ ) | 
						
							| 106 | 105 | ad2antrl | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  𝑥  ∈  ℂ ) | 
						
							| 107 | 95 106 | mulcld | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( 𝑀  ·  𝑥 )  ∈  ℂ ) | 
						
							| 108 |  | zcn | ⊢ ( 𝑦  ∈  ℤ  →  𝑦  ∈  ℂ ) | 
						
							| 109 | 108 | ad2antll | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  𝑦  ∈  ℂ ) | 
						
							| 110 | 96 109 | mulcld | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( 𝑁  ·  𝑦 )  ∈  ℂ ) | 
						
							| 111 | 91 107 110 | adddid | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( 𝑛  ·  ( ( 𝑀  ·  𝑥 )  +  ( 𝑁  ·  𝑦 ) ) )  =  ( ( 𝑛  ·  ( 𝑀  ·  𝑥 ) )  +  ( 𝑛  ·  ( 𝑁  ·  𝑦 ) ) ) ) | 
						
							| 112 | 111 | oveq1d | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( ( 𝑛  ·  ( ( 𝑀  ·  𝑥 )  +  ( 𝑁  ·  𝑦 ) ) )  /  ( 𝑀  ·  𝑁 ) )  =  ( ( ( 𝑛  ·  ( 𝑀  ·  𝑥 ) )  +  ( 𝑛  ·  ( 𝑁  ·  𝑦 ) ) )  /  ( 𝑀  ·  𝑁 ) ) ) | 
						
							| 113 | 91 107 | mulcld | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( 𝑛  ·  ( 𝑀  ·  𝑥 ) )  ∈  ℂ ) | 
						
							| 114 | 91 110 | mulcld | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( 𝑛  ·  ( 𝑁  ·  𝑦 ) )  ∈  ℂ ) | 
						
							| 115 | 113 114 93 99 | divdird | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( ( ( 𝑛  ·  ( 𝑀  ·  𝑥 ) )  +  ( 𝑛  ·  ( 𝑁  ·  𝑦 ) ) )  /  ( 𝑀  ·  𝑁 ) )  =  ( ( ( 𝑛  ·  ( 𝑀  ·  𝑥 ) )  /  ( 𝑀  ·  𝑁 ) )  +  ( ( 𝑛  ·  ( 𝑁  ·  𝑦 ) )  /  ( 𝑀  ·  𝑁 ) ) ) ) | 
						
							| 116 | 112 115 | eqtrd | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( ( 𝑛  ·  ( ( 𝑀  ·  𝑥 )  +  ( 𝑁  ·  𝑦 ) ) )  /  ( 𝑀  ·  𝑁 ) )  =  ( ( ( 𝑛  ·  ( 𝑀  ·  𝑥 ) )  /  ( 𝑀  ·  𝑁 ) )  +  ( ( 𝑛  ·  ( 𝑁  ·  𝑦 ) )  /  ( 𝑀  ·  𝑁 ) ) ) ) | 
						
							| 117 | 104 116 | sylan9eqr | ⊢ ( ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑀  gcd  𝑁 )  =  ( ( 𝑀  ·  𝑥 )  +  ( 𝑁  ·  𝑦 ) ) )  →  ( ( 𝑛  ·  ( 𝑀  gcd  𝑁 ) )  /  ( 𝑀  ·  𝑁 ) )  =  ( ( ( 𝑛  ·  ( 𝑀  ·  𝑥 ) )  /  ( 𝑀  ·  𝑁 ) )  +  ( ( 𝑛  ·  ( 𝑁  ·  𝑦 ) )  /  ( 𝑀  ·  𝑁 ) ) ) ) | 
						
							| 118 | 91 95 106 | mul12d | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( 𝑛  ·  ( 𝑀  ·  𝑥 ) )  =  ( 𝑀  ·  ( 𝑛  ·  𝑥 ) ) ) | 
						
							| 119 | 118 | oveq1d | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( ( 𝑛  ·  ( 𝑀  ·  𝑥 ) )  /  ( 𝑀  ·  𝑁 ) )  =  ( ( 𝑀  ·  ( 𝑛  ·  𝑥 ) )  /  ( 𝑀  ·  𝑁 ) ) ) | 
						
							| 120 | 91 106 | mulcld | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( 𝑛  ·  𝑥 )  ∈  ℂ ) | 
						
							| 121 | 120 96 95 98 97 | divcan5d | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( ( 𝑀  ·  ( 𝑛  ·  𝑥 ) )  /  ( 𝑀  ·  𝑁 ) )  =  ( ( 𝑛  ·  𝑥 )  /  𝑁 ) ) | 
						
							| 122 | 119 121 | eqtrd | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( ( 𝑛  ·  ( 𝑀  ·  𝑥 ) )  /  ( 𝑀  ·  𝑁 ) )  =  ( ( 𝑛  ·  𝑥 )  /  𝑁 ) ) | 
						
							| 123 | 91 96 109 | mul12d | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( 𝑛  ·  ( 𝑁  ·  𝑦 ) )  =  ( 𝑁  ·  ( 𝑛  ·  𝑦 ) ) ) | 
						
							| 124 | 123 | oveq1d | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( ( 𝑛  ·  ( 𝑁  ·  𝑦 ) )  /  ( 𝑀  ·  𝑁 ) )  =  ( ( 𝑁  ·  ( 𝑛  ·  𝑦 ) )  /  ( 𝑀  ·  𝑁 ) ) ) | 
						
							| 125 | 72 | ad2antrr | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( 𝑀  ·  𝑁 )  =  ( 𝑁  ·  𝑀 ) ) | 
						
							| 126 | 125 | oveq2d | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( ( 𝑁  ·  ( 𝑛  ·  𝑦 ) )  /  ( 𝑀  ·  𝑁 ) )  =  ( ( 𝑁  ·  ( 𝑛  ·  𝑦 ) )  /  ( 𝑁  ·  𝑀 ) ) ) | 
						
							| 127 | 91 109 | mulcld | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( 𝑛  ·  𝑦 )  ∈  ℂ ) | 
						
							| 128 | 127 95 96 97 98 | divcan5d | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( ( 𝑁  ·  ( 𝑛  ·  𝑦 ) )  /  ( 𝑁  ·  𝑀 ) )  =  ( ( 𝑛  ·  𝑦 )  /  𝑀 ) ) | 
						
							| 129 | 124 126 128 | 3eqtrd | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( ( 𝑛  ·  ( 𝑁  ·  𝑦 ) )  /  ( 𝑀  ·  𝑁 ) )  =  ( ( 𝑛  ·  𝑦 )  /  𝑀 ) ) | 
						
							| 130 | 122 129 | oveq12d | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( ( ( 𝑛  ·  ( 𝑀  ·  𝑥 ) )  /  ( 𝑀  ·  𝑁 ) )  +  ( ( 𝑛  ·  ( 𝑁  ·  𝑦 ) )  /  ( 𝑀  ·  𝑁 ) ) )  =  ( ( ( 𝑛  ·  𝑥 )  /  𝑁 )  +  ( ( 𝑛  ·  𝑦 )  /  𝑀 ) ) ) | 
						
							| 131 | 130 | adantr | ⊢ ( ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑀  gcd  𝑁 )  =  ( ( 𝑀  ·  𝑥 )  +  ( 𝑁  ·  𝑦 ) ) )  →  ( ( ( 𝑛  ·  ( 𝑀  ·  𝑥 ) )  /  ( 𝑀  ·  𝑁 ) )  +  ( ( 𝑛  ·  ( 𝑁  ·  𝑦 ) )  /  ( 𝑀  ·  𝑁 ) ) )  =  ( ( ( 𝑛  ·  𝑥 )  /  𝑁 )  +  ( ( 𝑛  ·  𝑦 )  /  𝑀 ) ) ) | 
						
							| 132 | 102 117 131 | 3eqtrd | ⊢ ( ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑀  gcd  𝑁 )  =  ( ( 𝑀  ·  𝑥 )  +  ( 𝑁  ·  𝑦 ) ) )  →  ( 𝑛  /  ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) ) )  =  ( ( ( 𝑛  ·  𝑥 )  /  𝑁 )  +  ( ( 𝑛  ·  𝑦 )  /  𝑀 ) ) ) | 
						
							| 133 | 132 | ex | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( ( 𝑀  gcd  𝑁 )  =  ( ( 𝑀  ·  𝑥 )  +  ( 𝑁  ·  𝑦 ) )  →  ( 𝑛  /  ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) ) )  =  ( ( ( 𝑛  ·  𝑥 )  /  𝑁 )  +  ( ( 𝑛  ·  𝑦 )  /  𝑀 ) ) ) ) | 
						
							| 134 | 133 | adantlrr | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) ) )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( ( 𝑀  gcd  𝑁 )  =  ( ( 𝑀  ·  𝑥 )  +  ( 𝑁  ·  𝑦 ) )  →  ( 𝑛  /  ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) ) )  =  ( ( ( 𝑛  ·  𝑥 )  /  𝑁 )  +  ( ( 𝑛  ·  𝑦 )  /  𝑀 ) ) ) ) | 
						
							| 135 | 134 | imp | ⊢ ( ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) ) )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑀  gcd  𝑁 )  =  ( ( 𝑀  ·  𝑥 )  +  ( 𝑁  ·  𝑦 ) ) )  →  ( 𝑛  /  ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) ) )  =  ( ( ( 𝑛  ·  𝑥 )  /  𝑁 )  +  ( ( 𝑛  ·  𝑦 )  /  𝑀 ) ) ) | 
						
							| 136 | 6 | ad3antlr | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  𝑁  ∈  ℤ ) | 
						
							| 137 |  | nnz | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℤ ) | 
						
							| 138 | 137 | ad2antlr | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  𝑛  ∈  ℤ ) | 
						
							| 139 |  | simprl | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  𝑥  ∈  ℤ ) | 
						
							| 140 |  | dvdsmultr1 | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑛  ∈  ℤ  ∧  𝑥  ∈  ℤ )  →  ( 𝑁  ∥  𝑛  →  𝑁  ∥  ( 𝑛  ·  𝑥 ) ) ) | 
						
							| 141 | 136 138 139 140 | syl3anc | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( 𝑁  ∥  𝑛  →  𝑁  ∥  ( 𝑛  ·  𝑥 ) ) ) | 
						
							| 142 | 138 139 | zmulcld | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( 𝑛  ·  𝑥 )  ∈  ℤ ) | 
						
							| 143 |  | dvdsval2 | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑁  ≠  0  ∧  ( 𝑛  ·  𝑥 )  ∈  ℤ )  →  ( 𝑁  ∥  ( 𝑛  ·  𝑥 )  ↔  ( ( 𝑛  ·  𝑥 )  /  𝑁 )  ∈  ℤ ) ) | 
						
							| 144 | 136 98 142 143 | syl3anc | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( 𝑁  ∥  ( 𝑛  ·  𝑥 )  ↔  ( ( 𝑛  ·  𝑥 )  /  𝑁 )  ∈  ℤ ) ) | 
						
							| 145 | 141 144 | sylibd | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( 𝑁  ∥  𝑛  →  ( ( 𝑛  ·  𝑥 )  /  𝑁 )  ∈  ℤ ) ) | 
						
							| 146 | 145 | adantld | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 )  →  ( ( 𝑛  ·  𝑥 )  /  𝑁 )  ∈  ℤ ) ) | 
						
							| 147 | 146 | 3impia | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) )  →  ( ( 𝑛  ·  𝑥 )  /  𝑁 )  ∈  ℤ ) | 
						
							| 148 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  𝑀  ∈  ℤ ) | 
						
							| 149 |  | simprr | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  𝑦  ∈  ℤ ) | 
						
							| 150 |  | dvdsmultr1 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑛  ∈  ℤ  ∧  𝑦  ∈  ℤ )  →  ( 𝑀  ∥  𝑛  →  𝑀  ∥  ( 𝑛  ·  𝑦 ) ) ) | 
						
							| 151 | 148 138 149 150 | syl3anc | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( 𝑀  ∥  𝑛  →  𝑀  ∥  ( 𝑛  ·  𝑦 ) ) ) | 
						
							| 152 | 138 149 | zmulcld | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( 𝑛  ·  𝑦 )  ∈  ℤ ) | 
						
							| 153 |  | dvdsval2 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑀  ≠  0  ∧  ( 𝑛  ·  𝑦 )  ∈  ℤ )  →  ( 𝑀  ∥  ( 𝑛  ·  𝑦 )  ↔  ( ( 𝑛  ·  𝑦 )  /  𝑀 )  ∈  ℤ ) ) | 
						
							| 154 | 148 97 152 153 | syl3anc | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( 𝑀  ∥  ( 𝑛  ·  𝑦 )  ↔  ( ( 𝑛  ·  𝑦 )  /  𝑀 )  ∈  ℤ ) ) | 
						
							| 155 | 151 154 | sylibd | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( 𝑀  ∥  𝑛  →  ( ( 𝑛  ·  𝑦 )  /  𝑀 )  ∈  ℤ ) ) | 
						
							| 156 | 155 | adantrd | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 )  →  ( ( 𝑛  ·  𝑦 )  /  𝑀 )  ∈  ℤ ) ) | 
						
							| 157 | 156 | 3impia | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) )  →  ( ( 𝑛  ·  𝑦 )  /  𝑀 )  ∈  ℤ ) | 
						
							| 158 | 147 157 | zaddcld | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) )  →  ( ( ( 𝑛  ·  𝑥 )  /  𝑁 )  +  ( ( 𝑛  ·  𝑦 )  /  𝑀 ) )  ∈  ℤ ) | 
						
							| 159 | 158 | 3expia | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 )  →  ( ( ( 𝑛  ·  𝑥 )  /  𝑁 )  +  ( ( 𝑛  ·  𝑦 )  /  𝑀 ) )  ∈  ℤ ) ) | 
						
							| 160 | 159 | an32s | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 )  →  ( ( ( 𝑛  ·  𝑥 )  /  𝑁 )  +  ( ( 𝑛  ·  𝑦 )  /  𝑀 ) )  ∈  ℤ ) ) | 
						
							| 161 | 160 | impr | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) ) )  →  ( ( ( 𝑛  ·  𝑥 )  /  𝑁 )  +  ( ( 𝑛  ·  𝑦 )  /  𝑀 ) )  ∈  ℤ ) | 
						
							| 162 | 161 | an32s | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) ) )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( ( ( 𝑛  ·  𝑥 )  /  𝑁 )  +  ( ( 𝑛  ·  𝑦 )  /  𝑀 ) )  ∈  ℤ ) | 
						
							| 163 | 162 | adantr | ⊢ ( ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) ) )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑀  gcd  𝑁 )  =  ( ( 𝑀  ·  𝑥 )  +  ( 𝑁  ·  𝑦 ) ) )  →  ( ( ( 𝑛  ·  𝑥 )  /  𝑁 )  +  ( ( 𝑛  ·  𝑦 )  /  𝑀 ) )  ∈  ℤ ) | 
						
							| 164 | 135 163 | eqeltrd | ⊢ ( ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) ) )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑀  gcd  𝑁 )  =  ( ( 𝑀  ·  𝑥 )  +  ( 𝑁  ·  𝑦 ) ) )  →  ( 𝑛  /  ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) ) )  ∈  ℤ ) | 
						
							| 165 | 45 | nnzd | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  ∈  ℤ ) | 
						
							| 166 | 165 | ad2antrr | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) ) )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  ∈  ℤ ) | 
						
							| 167 | 1 | nnne0d | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑀  ·  𝑁 )  ≠  0 ) | 
						
							| 168 | 92 63 167 53 | divne0d | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  ≠  0 ) | 
						
							| 169 | 168 | ad2antrr | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) ) )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  ≠  0 ) | 
						
							| 170 | 138 | adantlrr | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) ) )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  𝑛  ∈  ℤ ) | 
						
							| 171 |  | dvdsval2 | ⊢ ( ( ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  ∈  ℤ  ∧  ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  ≠  0  ∧  𝑛  ∈  ℤ )  →  ( ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  ∥  𝑛  ↔  ( 𝑛  /  ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) ) )  ∈  ℤ ) ) | 
						
							| 172 | 166 169 170 171 | syl3anc | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) ) )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  ∥  𝑛  ↔  ( 𝑛  /  ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) ) )  ∈  ℤ ) ) | 
						
							| 173 | 172 | adantr | ⊢ ( ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) ) )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑀  gcd  𝑁 )  =  ( ( 𝑀  ·  𝑥 )  +  ( 𝑁  ·  𝑦 ) ) )  →  ( ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  ∥  𝑛  ↔  ( 𝑛  /  ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) ) )  ∈  ℤ ) ) | 
						
							| 174 | 164 173 | mpbird | ⊢ ( ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) ) )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  ( 𝑀  gcd  𝑁 )  =  ( ( 𝑀  ·  𝑥 )  +  ( 𝑁  ·  𝑦 ) ) )  →  ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  ∥  𝑛 ) | 
						
							| 175 | 174 | ex | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) ) )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( ( 𝑀  gcd  𝑁 )  =  ( ( 𝑀  ·  𝑥 )  +  ( 𝑁  ·  𝑦 ) )  →  ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  ∥  𝑛 ) ) | 
						
							| 176 | 175 | reximdvva | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) ) )  →  ( ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℤ ( 𝑀  gcd  𝑁 )  =  ( ( 𝑀  ·  𝑥 )  +  ( 𝑁  ·  𝑦 ) )  →  ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℤ ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  ∥  𝑛 ) ) | 
						
							| 177 | 89 176 | mpd | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) ) )  →  ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℤ ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  ∥  𝑛 ) | 
						
							| 178 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 179 |  | ne0i | ⊢ ( 1  ∈  ℤ  →  ℤ  ≠  ∅ ) | 
						
							| 180 |  | r19.9rzv | ⊢ ( ℤ  ≠  ∅  →  ( ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  ∥  𝑛  ↔  ∃ 𝑦  ∈  ℤ ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  ∥  𝑛 ) ) | 
						
							| 181 | 178 179 180 | mp2b | ⊢ ( ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  ∥  𝑛  ↔  ∃ 𝑦  ∈  ℤ ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  ∥  𝑛 ) | 
						
							| 182 |  | r19.9rzv | ⊢ ( ℤ  ≠  ∅  →  ( ∃ 𝑦  ∈  ℤ ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  ∥  𝑛  ↔  ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℤ ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  ∥  𝑛 ) ) | 
						
							| 183 | 178 179 182 | mp2b | ⊢ ( ∃ 𝑦  ∈  ℤ ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  ∥  𝑛  ↔  ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℤ ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  ∥  𝑛 ) | 
						
							| 184 | 181 183 | bitri | ⊢ ( ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  ∥  𝑛  ↔  ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℤ ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  ∥  𝑛 ) | 
						
							| 185 | 177 184 | sylibr | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) ) )  →  ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  ∥  𝑛 ) | 
						
							| 186 | 165 | adantr | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) ) )  →  ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  ∈  ℤ ) | 
						
							| 187 |  | simprl | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 188 |  | dvdsle | ⊢ ( ( ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  ∈  ℤ  ∧  𝑛  ∈  ℕ )  →  ( ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  ∥  𝑛  →  ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  ≤  𝑛 ) ) | 
						
							| 189 | 186 187 188 | syl2anc | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) ) )  →  ( ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  ∥  𝑛  →  ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  ≤  𝑛 ) ) | 
						
							| 190 | 185 189 | mpd | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) ) )  →  ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  ≤  𝑛 ) | 
						
							| 191 | 86 190 | sylan2b | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  { 𝑥  ∈  ℕ  ∣  ( 𝑀  ∥  𝑥  ∧  𝑁  ∥  𝑥 ) } )  →  ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  ≤  𝑛 ) | 
						
							| 192 | 79 82 191 | lensymd | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑛  ∈  { 𝑥  ∈  ℕ  ∣  ( 𝑀  ∥  𝑥  ∧  𝑁  ∥  𝑥 ) } )  →  ¬  𝑛  <  ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) ) ) | 
						
							| 193 | 32 46 78 192 | infmin | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  inf ( { 𝑥  ∈  ℕ  ∣  ( 𝑀  ∥  𝑥  ∧  𝑁  ∥  𝑥 ) } ,  ℝ ,   <  )  =  ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) ) ) | 
						
							| 194 | 30 193 | eqtr2d | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  =  ( 𝑀  lcm  𝑁 ) ) | 
						
							| 195 | 194 45 | eqeltrrd | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑀  lcm  𝑁 )  ∈  ℕ ) | 
						
							| 196 | 195 | nncnd | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑀  lcm  𝑁 )  ∈  ℂ ) | 
						
							| 197 | 92 196 63 53 | divmul3d | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  =  ( 𝑀  lcm  𝑁 )  ↔  ( 𝑀  ·  𝑁 )  =  ( ( 𝑀  lcm  𝑁 )  ·  ( 𝑀  gcd  𝑁 ) ) ) ) | 
						
							| 198 | 194 197 | mpbid | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑀  ·  𝑁 )  =  ( ( 𝑀  lcm  𝑁 )  ·  ( 𝑀  gcd  𝑁 ) ) ) | 
						
							| 199 | 20 198 | eqtr2d | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑀  lcm  𝑁 )  ·  ( 𝑀  gcd  𝑁 ) )  =  ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) | 
						
							| 200 |  | simprl | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝐾  ∈  ℕ  ∧  ( 𝑀  ∥  𝐾  ∧  𝑁  ∥  𝐾 ) ) )  →  𝐾  ∈  ℕ ) | 
						
							| 201 |  | eleq1 | ⊢ ( 𝑛  =  𝐾  →  ( 𝑛  ∈  ℕ  ↔  𝐾  ∈  ℕ ) ) | 
						
							| 202 |  | breq2 | ⊢ ( 𝑛  =  𝐾  →  ( 𝑀  ∥  𝑛  ↔  𝑀  ∥  𝐾 ) ) | 
						
							| 203 |  | breq2 | ⊢ ( 𝑛  =  𝐾  →  ( 𝑁  ∥  𝑛  ↔  𝑁  ∥  𝐾 ) ) | 
						
							| 204 | 202 203 | anbi12d | ⊢ ( 𝑛  =  𝐾  →  ( ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 )  ↔  ( 𝑀  ∥  𝐾  ∧  𝑁  ∥  𝐾 ) ) ) | 
						
							| 205 | 201 204 | anbi12d | ⊢ ( 𝑛  =  𝐾  →  ( ( 𝑛  ∈  ℕ  ∧  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) )  ↔  ( 𝐾  ∈  ℕ  ∧  ( 𝑀  ∥  𝐾  ∧  𝑁  ∥  𝐾 ) ) ) ) | 
						
							| 206 | 205 | anbi2d | ⊢ ( 𝑛  =  𝐾  →  ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) ) )  ↔  ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝐾  ∈  ℕ  ∧  ( 𝑀  ∥  𝐾  ∧  𝑁  ∥  𝐾 ) ) ) ) ) | 
						
							| 207 |  | breq2 | ⊢ ( 𝑛  =  𝐾  →  ( ( 𝑀  lcm  𝑁 )  ∥  𝑛  ↔  ( 𝑀  lcm  𝑁 )  ∥  𝐾 ) ) | 
						
							| 208 | 206 207 | imbi12d | ⊢ ( 𝑛  =  𝐾  →  ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) ) )  →  ( 𝑀  lcm  𝑁 )  ∥  𝑛 )  ↔  ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝐾  ∈  ℕ  ∧  ( 𝑀  ∥  𝐾  ∧  𝑁  ∥  𝐾 ) ) )  →  ( 𝑀  lcm  𝑁 )  ∥  𝐾 ) ) ) | 
						
							| 209 | 194 | breq1d | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  ∥  𝑛  ↔  ( 𝑀  lcm  𝑁 )  ∥  𝑛 ) ) | 
						
							| 210 | 209 | adantr | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) ) )  →  ( ( ( 𝑀  ·  𝑁 )  /  ( 𝑀  gcd  𝑁 ) )  ∥  𝑛  ↔  ( 𝑀  lcm  𝑁 )  ∥  𝑛 ) ) | 
						
							| 211 | 185 210 | mpbid | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ  ∧  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) ) )  →  ( 𝑀  lcm  𝑁 )  ∥  𝑛 ) | 
						
							| 212 | 208 211 | vtoclg | ⊢ ( 𝐾  ∈  ℕ  →  ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝐾  ∈  ℕ  ∧  ( 𝑀  ∥  𝐾  ∧  𝑁  ∥  𝐾 ) ) )  →  ( 𝑀  lcm  𝑁 )  ∥  𝐾 ) ) | 
						
							| 213 | 200 212 | mpcom | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝐾  ∈  ℕ  ∧  ( 𝑀  ∥  𝐾  ∧  𝑁  ∥  𝐾 ) ) )  →  ( 𝑀  lcm  𝑁 )  ∥  𝐾 ) | 
						
							| 214 | 213 | ex | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( 𝐾  ∈  ℕ  ∧  ( 𝑀  ∥  𝐾  ∧  𝑁  ∥  𝐾 ) )  →  ( 𝑀  lcm  𝑁 )  ∥  𝐾 ) ) | 
						
							| 215 | 199 214 | jca | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( ( 𝑀  lcm  𝑁 )  ·  ( 𝑀  gcd  𝑁 ) )  =  ( abs ‘ ( 𝑀  ·  𝑁 ) )  ∧  ( ( 𝐾  ∈  ℕ  ∧  ( 𝑀  ∥  𝐾  ∧  𝑁  ∥  𝐾 ) )  →  ( 𝑀  lcm  𝑁 )  ∥  𝐾 ) ) ) |