Step |
Hyp |
Ref |
Expression |
1 |
|
nnz |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℤ ) |
2 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
3 |
|
lcmgcd |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 lcm 𝑁 ) · ( 𝑀 gcd 𝑁 ) ) = ( abs ‘ ( 𝑀 · 𝑁 ) ) ) |
4 |
1 2 3
|
syl2an |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 lcm 𝑁 ) · ( 𝑀 gcd 𝑁 ) ) = ( abs ‘ ( 𝑀 · 𝑁 ) ) ) |
5 |
|
nnmulcl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 · 𝑁 ) ∈ ℕ ) |
6 |
5
|
nnnn0d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 · 𝑁 ) ∈ ℕ0 ) |
7 |
|
nn0re |
⊢ ( ( 𝑀 · 𝑁 ) ∈ ℕ0 → ( 𝑀 · 𝑁 ) ∈ ℝ ) |
8 |
|
nn0ge0 |
⊢ ( ( 𝑀 · 𝑁 ) ∈ ℕ0 → 0 ≤ ( 𝑀 · 𝑁 ) ) |
9 |
7 8
|
jca |
⊢ ( ( 𝑀 · 𝑁 ) ∈ ℕ0 → ( ( 𝑀 · 𝑁 ) ∈ ℝ ∧ 0 ≤ ( 𝑀 · 𝑁 ) ) ) |
10 |
|
absid |
⊢ ( ( ( 𝑀 · 𝑁 ) ∈ ℝ ∧ 0 ≤ ( 𝑀 · 𝑁 ) ) → ( abs ‘ ( 𝑀 · 𝑁 ) ) = ( 𝑀 · 𝑁 ) ) |
11 |
6 9 10
|
3syl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( abs ‘ ( 𝑀 · 𝑁 ) ) = ( 𝑀 · 𝑁 ) ) |
12 |
4 11
|
eqtrd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 lcm 𝑁 ) · ( 𝑀 gcd 𝑁 ) ) = ( 𝑀 · 𝑁 ) ) |