| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnz | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℤ ) | 
						
							| 2 |  | nnz | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℤ ) | 
						
							| 3 |  | lcmgcd | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑀  lcm  𝑁 )  ·  ( 𝑀  gcd  𝑁 ) )  =  ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) | 
						
							| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑀  lcm  𝑁 )  ·  ( 𝑀  gcd  𝑁 ) )  =  ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) | 
						
							| 5 |  | nnmulcl | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑀  ·  𝑁 )  ∈  ℕ ) | 
						
							| 6 | 5 | nnnn0d | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑀  ·  𝑁 )  ∈  ℕ0 ) | 
						
							| 7 |  | nn0re | ⊢ ( ( 𝑀  ·  𝑁 )  ∈  ℕ0  →  ( 𝑀  ·  𝑁 )  ∈  ℝ ) | 
						
							| 8 |  | nn0ge0 | ⊢ ( ( 𝑀  ·  𝑁 )  ∈  ℕ0  →  0  ≤  ( 𝑀  ·  𝑁 ) ) | 
						
							| 9 | 7 8 | jca | ⊢ ( ( 𝑀  ·  𝑁 )  ∈  ℕ0  →  ( ( 𝑀  ·  𝑁 )  ∈  ℝ  ∧  0  ≤  ( 𝑀  ·  𝑁 ) ) ) | 
						
							| 10 |  | absid | ⊢ ( ( ( 𝑀  ·  𝑁 )  ∈  ℝ  ∧  0  ≤  ( 𝑀  ·  𝑁 ) )  →  ( abs ‘ ( 𝑀  ·  𝑁 ) )  =  ( 𝑀  ·  𝑁 ) ) | 
						
							| 11 | 6 9 10 | 3syl | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( abs ‘ ( 𝑀  ·  𝑁 ) )  =  ( 𝑀  ·  𝑁 ) ) | 
						
							| 12 | 4 11 | eqtrd | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑀  lcm  𝑁 )  ·  ( 𝑀  gcd  𝑁 ) )  =  ( 𝑀  ·  𝑁 ) ) |