Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑀 = 0 → ( 𝑀 lcm 𝑀 ) = ( 𝑀 lcm 0 ) ) |
2 |
|
fveq2 |
⊢ ( 𝑀 = 0 → ( abs ‘ 𝑀 ) = ( abs ‘ 0 ) ) |
3 |
|
abs0 |
⊢ ( abs ‘ 0 ) = 0 |
4 |
2 3
|
eqtrdi |
⊢ ( 𝑀 = 0 → ( abs ‘ 𝑀 ) = 0 ) |
5 |
1 4
|
eqeq12d |
⊢ ( 𝑀 = 0 → ( ( 𝑀 lcm 𝑀 ) = ( abs ‘ 𝑀 ) ↔ ( 𝑀 lcm 0 ) = 0 ) ) |
6 |
|
lcmcl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 lcm 𝑀 ) ∈ ℕ0 ) |
7 |
6
|
nn0cnd |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 lcm 𝑀 ) ∈ ℂ ) |
8 |
7
|
anidms |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 lcm 𝑀 ) ∈ ℂ ) |
9 |
8
|
adantr |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) → ( 𝑀 lcm 𝑀 ) ∈ ℂ ) |
10 |
|
zabscl |
⊢ ( 𝑀 ∈ ℤ → ( abs ‘ 𝑀 ) ∈ ℤ ) |
11 |
10
|
zcnd |
⊢ ( 𝑀 ∈ ℤ → ( abs ‘ 𝑀 ) ∈ ℂ ) |
12 |
11
|
adantr |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) → ( abs ‘ 𝑀 ) ∈ ℂ ) |
13 |
|
zcn |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) |
14 |
13
|
adantr |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) → 𝑀 ∈ ℂ ) |
15 |
|
simpr |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) → 𝑀 ≠ 0 ) |
16 |
14 15
|
absne0d |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) → ( abs ‘ 𝑀 ) ≠ 0 ) |
17 |
|
lcmgcd |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑀 lcm 𝑀 ) · ( 𝑀 gcd 𝑀 ) ) = ( abs ‘ ( 𝑀 · 𝑀 ) ) ) |
18 |
17
|
anidms |
⊢ ( 𝑀 ∈ ℤ → ( ( 𝑀 lcm 𝑀 ) · ( 𝑀 gcd 𝑀 ) ) = ( abs ‘ ( 𝑀 · 𝑀 ) ) ) |
19 |
|
gcdid |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 gcd 𝑀 ) = ( abs ‘ 𝑀 ) ) |
20 |
19
|
oveq2d |
⊢ ( 𝑀 ∈ ℤ → ( ( 𝑀 lcm 𝑀 ) · ( 𝑀 gcd 𝑀 ) ) = ( ( 𝑀 lcm 𝑀 ) · ( abs ‘ 𝑀 ) ) ) |
21 |
13 13
|
absmuld |
⊢ ( 𝑀 ∈ ℤ → ( abs ‘ ( 𝑀 · 𝑀 ) ) = ( ( abs ‘ 𝑀 ) · ( abs ‘ 𝑀 ) ) ) |
22 |
18 20 21
|
3eqtr3d |
⊢ ( 𝑀 ∈ ℤ → ( ( 𝑀 lcm 𝑀 ) · ( abs ‘ 𝑀 ) ) = ( ( abs ‘ 𝑀 ) · ( abs ‘ 𝑀 ) ) ) |
23 |
22
|
adantr |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) → ( ( 𝑀 lcm 𝑀 ) · ( abs ‘ 𝑀 ) ) = ( ( abs ‘ 𝑀 ) · ( abs ‘ 𝑀 ) ) ) |
24 |
9 12 12 16 23
|
mulcan2ad |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) → ( 𝑀 lcm 𝑀 ) = ( abs ‘ 𝑀 ) ) |
25 |
|
lcm0val |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 lcm 0 ) = 0 ) |
26 |
5 24 25
|
pm2.61ne |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 lcm 𝑀 ) = ( abs ‘ 𝑀 ) ) |