| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lcmn0val | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  ( 𝑀  lcm  𝑁 )  =  inf ( { 𝑛  ∈  ℕ  ∣  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) } ,  ℝ ,   <  ) ) | 
						
							| 2 | 1 | 3adantl1 | ⊢ ( ( ( 𝐾  ∈  ℕ  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  ( 𝑀  lcm  𝑁 )  =  inf ( { 𝑛  ∈  ℕ  ∣  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) } ,  ℝ ,   <  ) ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( ( ( 𝐾  ∈  ℕ  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  ∧  ( 𝑀  ∥  𝐾  ∧  𝑁  ∥  𝐾 ) )  →  ( 𝑀  lcm  𝑁 )  =  inf ( { 𝑛  ∈  ℕ  ∣  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) } ,  ℝ ,   <  ) ) | 
						
							| 4 |  | breq2 | ⊢ ( 𝑛  =  𝐾  →  ( 𝑀  ∥  𝑛  ↔  𝑀  ∥  𝐾 ) ) | 
						
							| 5 |  | breq2 | ⊢ ( 𝑛  =  𝐾  →  ( 𝑁  ∥  𝑛  ↔  𝑁  ∥  𝐾 ) ) | 
						
							| 6 | 4 5 | anbi12d | ⊢ ( 𝑛  =  𝐾  →  ( ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 )  ↔  ( 𝑀  ∥  𝐾  ∧  𝑁  ∥  𝐾 ) ) ) | 
						
							| 7 | 6 | elrab | ⊢ ( 𝐾  ∈  { 𝑛  ∈  ℕ  ∣  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) }  ↔  ( 𝐾  ∈  ℕ  ∧  ( 𝑀  ∥  𝐾  ∧  𝑁  ∥  𝐾 ) ) ) | 
						
							| 8 |  | ssrab2 | ⊢ { 𝑛  ∈  ℕ  ∣  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) }  ⊆  ℕ | 
						
							| 9 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 10 | 8 9 | sseqtri | ⊢ { 𝑛  ∈  ℕ  ∣  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) }  ⊆  ( ℤ≥ ‘ 1 ) | 
						
							| 11 |  | infssuzle | ⊢ ( ( { 𝑛  ∈  ℕ  ∣  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) }  ⊆  ( ℤ≥ ‘ 1 )  ∧  𝐾  ∈  { 𝑛  ∈  ℕ  ∣  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) } )  →  inf ( { 𝑛  ∈  ℕ  ∣  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) } ,  ℝ ,   <  )  ≤  𝐾 ) | 
						
							| 12 | 10 11 | mpan | ⊢ ( 𝐾  ∈  { 𝑛  ∈  ℕ  ∣  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) }  →  inf ( { 𝑛  ∈  ℕ  ∣  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) } ,  ℝ ,   <  )  ≤  𝐾 ) | 
						
							| 13 | 7 12 | sylbir | ⊢ ( ( 𝐾  ∈  ℕ  ∧  ( 𝑀  ∥  𝐾  ∧  𝑁  ∥  𝐾 ) )  →  inf ( { 𝑛  ∈  ℕ  ∣  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) } ,  ℝ ,   <  )  ≤  𝐾 ) | 
						
							| 14 | 13 | ex | ⊢ ( 𝐾  ∈  ℕ  →  ( ( 𝑀  ∥  𝐾  ∧  𝑁  ∥  𝐾 )  →  inf ( { 𝑛  ∈  ℕ  ∣  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) } ,  ℝ ,   <  )  ≤  𝐾 ) ) | 
						
							| 15 | 14 | 3ad2ant1 | ⊢ ( ( 𝐾  ∈  ℕ  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑀  ∥  𝐾  ∧  𝑁  ∥  𝐾 )  →  inf ( { 𝑛  ∈  ℕ  ∣  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) } ,  ℝ ,   <  )  ≤  𝐾 ) ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( ( 𝐾  ∈  ℕ  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  ( ( 𝑀  ∥  𝐾  ∧  𝑁  ∥  𝐾 )  →  inf ( { 𝑛  ∈  ℕ  ∣  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) } ,  ℝ ,   <  )  ≤  𝐾 ) ) | 
						
							| 17 | 16 | imp | ⊢ ( ( ( ( 𝐾  ∈  ℕ  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  ∧  ( 𝑀  ∥  𝐾  ∧  𝑁  ∥  𝐾 ) )  →  inf ( { 𝑛  ∈  ℕ  ∣  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) } ,  ℝ ,   <  )  ≤  𝐾 ) | 
						
							| 18 | 3 17 | eqbrtrd | ⊢ ( ( ( ( 𝐾  ∈  ℕ  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  ∧  ( 𝑀  ∥  𝐾  ∧  𝑁  ∥  𝐾 ) )  →  ( 𝑀  lcm  𝑁 )  ≤  𝐾 ) | 
						
							| 19 | 18 | ex | ⊢ ( ( ( 𝐾  ∈  ℕ  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  ( ( 𝑀  ∥  𝐾  ∧  𝑁  ∥  𝐾 )  →  ( 𝑀  lcm  𝑁 )  ≤  𝐾 ) ) |