| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcmn0val |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm 𝑁 ) = inf ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } , ℝ , < ) ) |
| 2 |
1
|
3adantl1 |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm 𝑁 ) = inf ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } , ℝ , < ) ) |
| 3 |
2
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) ∧ ( 𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾 ) ) → ( 𝑀 lcm 𝑁 ) = inf ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } , ℝ , < ) ) |
| 4 |
|
breq2 |
⊢ ( 𝑛 = 𝐾 → ( 𝑀 ∥ 𝑛 ↔ 𝑀 ∥ 𝐾 ) ) |
| 5 |
|
breq2 |
⊢ ( 𝑛 = 𝐾 → ( 𝑁 ∥ 𝑛 ↔ 𝑁 ∥ 𝐾 ) ) |
| 6 |
4 5
|
anbi12d |
⊢ ( 𝑛 = 𝐾 → ( ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ↔ ( 𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾 ) ) ) |
| 7 |
6
|
elrab |
⊢ ( 𝐾 ∈ { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } ↔ ( 𝐾 ∈ ℕ ∧ ( 𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾 ) ) ) |
| 8 |
|
ssrab2 |
⊢ { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } ⊆ ℕ |
| 9 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 10 |
8 9
|
sseqtri |
⊢ { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } ⊆ ( ℤ≥ ‘ 1 ) |
| 11 |
|
infssuzle |
⊢ ( ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } ⊆ ( ℤ≥ ‘ 1 ) ∧ 𝐾 ∈ { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } ) → inf ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } , ℝ , < ) ≤ 𝐾 ) |
| 12 |
10 11
|
mpan |
⊢ ( 𝐾 ∈ { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } → inf ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } , ℝ , < ) ≤ 𝐾 ) |
| 13 |
7 12
|
sylbir |
⊢ ( ( 𝐾 ∈ ℕ ∧ ( 𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾 ) ) → inf ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } , ℝ , < ) ≤ 𝐾 ) |
| 14 |
13
|
ex |
⊢ ( 𝐾 ∈ ℕ → ( ( 𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾 ) → inf ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } , ℝ , < ) ≤ 𝐾 ) ) |
| 15 |
14
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾 ) → inf ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } , ℝ , < ) ≤ 𝐾 ) ) |
| 16 |
15
|
adantr |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( ( 𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾 ) → inf ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } , ℝ , < ) ≤ 𝐾 ) ) |
| 17 |
16
|
imp |
⊢ ( ( ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) ∧ ( 𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾 ) ) → inf ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } , ℝ , < ) ≤ 𝐾 ) |
| 18 |
3 17
|
eqbrtrd |
⊢ ( ( ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) ∧ ( 𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾 ) ) → ( 𝑀 lcm 𝑁 ) ≤ 𝐾 ) |
| 19 |
18
|
ex |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( ( 𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾 ) → ( 𝑀 lcm 𝑁 ) ≤ 𝐾 ) ) |