Metamath Proof Explorer


Theorem lcmn0cl

Description: Closure of the lcm operator. (Contributed by Steve Rodriguez, 20-Jan-2020)

Ref Expression
Assertion lcmn0cl ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm 𝑁 ) ∈ ℕ )

Proof

Step Hyp Ref Expression
1 ssrab2 { 𝑛 ∈ ℕ ∣ ( 𝑀𝑛𝑁𝑛 ) } ⊆ ℕ
2 lcmcllem ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm 𝑁 ) ∈ { 𝑛 ∈ ℕ ∣ ( 𝑀𝑛𝑁𝑛 ) } )
3 1 2 sselid ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm 𝑁 ) ∈ ℕ )