Step |
Hyp |
Ref |
Expression |
1 |
|
lcm0val |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 lcm 0 ) = 0 ) |
2 |
|
znegcl |
⊢ ( 𝑁 ∈ ℤ → - 𝑁 ∈ ℤ ) |
3 |
|
lcm0val |
⊢ ( - 𝑁 ∈ ℤ → ( - 𝑁 lcm 0 ) = 0 ) |
4 |
2 3
|
syl |
⊢ ( 𝑁 ∈ ℤ → ( - 𝑁 lcm 0 ) = 0 ) |
5 |
1 4
|
eqtr4d |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 lcm 0 ) = ( - 𝑁 lcm 0 ) ) |
6 |
5
|
ad2antlr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( 𝑁 lcm 0 ) = ( - 𝑁 lcm 0 ) ) |
7 |
|
oveq2 |
⊢ ( 𝑀 = 0 → ( 𝑁 lcm 𝑀 ) = ( 𝑁 lcm 0 ) ) |
8 |
|
oveq2 |
⊢ ( 𝑀 = 0 → ( - 𝑁 lcm 𝑀 ) = ( - 𝑁 lcm 0 ) ) |
9 |
7 8
|
eqeq12d |
⊢ ( 𝑀 = 0 → ( ( 𝑁 lcm 𝑀 ) = ( - 𝑁 lcm 𝑀 ) ↔ ( 𝑁 lcm 0 ) = ( - 𝑁 lcm 0 ) ) ) |
10 |
9
|
adantl |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( ( 𝑁 lcm 𝑀 ) = ( - 𝑁 lcm 𝑀 ) ↔ ( 𝑁 lcm 0 ) = ( - 𝑁 lcm 0 ) ) ) |
11 |
6 10
|
mpbird |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( 𝑁 lcm 𝑀 ) = ( - 𝑁 lcm 𝑀 ) ) |
12 |
|
lcmcom |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm 𝑁 ) = ( 𝑁 lcm 𝑀 ) ) |
13 |
|
lcmcom |
⊢ ( ( 𝑀 ∈ ℤ ∧ - 𝑁 ∈ ℤ ) → ( 𝑀 lcm - 𝑁 ) = ( - 𝑁 lcm 𝑀 ) ) |
14 |
2 13
|
sylan2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm - 𝑁 ) = ( - 𝑁 lcm 𝑀 ) ) |
15 |
12 14
|
eqeq12d |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 lcm 𝑁 ) = ( 𝑀 lcm - 𝑁 ) ↔ ( 𝑁 lcm 𝑀 ) = ( - 𝑁 lcm 𝑀 ) ) ) |
16 |
15
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( ( 𝑀 lcm 𝑁 ) = ( 𝑀 lcm - 𝑁 ) ↔ ( 𝑁 lcm 𝑀 ) = ( - 𝑁 lcm 𝑀 ) ) ) |
17 |
11 16
|
mpbird |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( 𝑀 lcm 𝑁 ) = ( 𝑀 lcm - 𝑁 ) ) |
18 |
|
neg0 |
⊢ - 0 = 0 |
19 |
18
|
oveq2i |
⊢ ( 𝑀 lcm - 0 ) = ( 𝑀 lcm 0 ) |
20 |
19
|
eqcomi |
⊢ ( 𝑀 lcm 0 ) = ( 𝑀 lcm - 0 ) |
21 |
|
oveq2 |
⊢ ( 𝑁 = 0 → ( 𝑀 lcm 𝑁 ) = ( 𝑀 lcm 0 ) ) |
22 |
|
negeq |
⊢ ( 𝑁 = 0 → - 𝑁 = - 0 ) |
23 |
22
|
oveq2d |
⊢ ( 𝑁 = 0 → ( 𝑀 lcm - 𝑁 ) = ( 𝑀 lcm - 0 ) ) |
24 |
20 21 23
|
3eqtr4a |
⊢ ( 𝑁 = 0 → ( 𝑀 lcm 𝑁 ) = ( 𝑀 lcm - 𝑁 ) ) |
25 |
24
|
adantl |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑁 = 0 ) → ( 𝑀 lcm 𝑁 ) = ( 𝑀 lcm - 𝑁 ) ) |
26 |
17 25
|
jaodan |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm 𝑁 ) = ( 𝑀 lcm - 𝑁 ) ) |
27 |
|
dvdslcm |
⊢ ( ( 𝑀 ∈ ℤ ∧ - 𝑁 ∈ ℤ ) → ( 𝑀 ∥ ( 𝑀 lcm - 𝑁 ) ∧ - 𝑁 ∥ ( 𝑀 lcm - 𝑁 ) ) ) |
28 |
2 27
|
sylan2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ ( 𝑀 lcm - 𝑁 ) ∧ - 𝑁 ∥ ( 𝑀 lcm - 𝑁 ) ) ) |
29 |
|
simpr |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℤ ) |
30 |
|
lcmcl |
⊢ ( ( 𝑀 ∈ ℤ ∧ - 𝑁 ∈ ℤ ) → ( 𝑀 lcm - 𝑁 ) ∈ ℕ0 ) |
31 |
2 30
|
sylan2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm - 𝑁 ) ∈ ℕ0 ) |
32 |
31
|
nn0zd |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm - 𝑁 ) ∈ ℤ ) |
33 |
|
negdvdsb |
⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝑀 lcm - 𝑁 ) ∈ ℤ ) → ( 𝑁 ∥ ( 𝑀 lcm - 𝑁 ) ↔ - 𝑁 ∥ ( 𝑀 lcm - 𝑁 ) ) ) |
34 |
29 32 33
|
syl2anc |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∥ ( 𝑀 lcm - 𝑁 ) ↔ - 𝑁 ∥ ( 𝑀 lcm - 𝑁 ) ) ) |
35 |
34
|
anbi2d |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 ∥ ( 𝑀 lcm - 𝑁 ) ∧ 𝑁 ∥ ( 𝑀 lcm - 𝑁 ) ) ↔ ( 𝑀 ∥ ( 𝑀 lcm - 𝑁 ) ∧ - 𝑁 ∥ ( 𝑀 lcm - 𝑁 ) ) ) ) |
36 |
28 35
|
mpbird |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ ( 𝑀 lcm - 𝑁 ) ∧ 𝑁 ∥ ( 𝑀 lcm - 𝑁 ) ) ) |
37 |
36
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 ∥ ( 𝑀 lcm - 𝑁 ) ∧ 𝑁 ∥ ( 𝑀 lcm - 𝑁 ) ) ) |
38 |
|
zcn |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) |
39 |
38
|
negeq0d |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 = 0 ↔ - 𝑁 = 0 ) ) |
40 |
39
|
orbi2d |
⊢ ( 𝑁 ∈ ℤ → ( ( 𝑀 = 0 ∨ 𝑁 = 0 ) ↔ ( 𝑀 = 0 ∨ - 𝑁 = 0 ) ) ) |
41 |
40
|
notbid |
⊢ ( 𝑁 ∈ ℤ → ( ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ↔ ¬ ( 𝑀 = 0 ∨ - 𝑁 = 0 ) ) ) |
42 |
41
|
biimpa |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ¬ ( 𝑀 = 0 ∨ - 𝑁 = 0 ) ) |
43 |
42
|
adantll |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ¬ ( 𝑀 = 0 ∨ - 𝑁 = 0 ) ) |
44 |
|
lcmn0cl |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ - 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ - 𝑁 = 0 ) ) → ( 𝑀 lcm - 𝑁 ) ∈ ℕ ) |
45 |
2 44
|
sylanl2 |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ - 𝑁 = 0 ) ) → ( 𝑀 lcm - 𝑁 ) ∈ ℕ ) |
46 |
43 45
|
syldan |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm - 𝑁 ) ∈ ℕ ) |
47 |
|
simpl |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
48 |
|
3anass |
⊢ ( ( ( 𝑀 lcm - 𝑁 ) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ↔ ( ( 𝑀 lcm - 𝑁 ) ∈ ℕ ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) ) |
49 |
46 47 48
|
sylanbrc |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( ( 𝑀 lcm - 𝑁 ) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
50 |
|
simpr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) |
51 |
|
lcmledvds |
⊢ ( ( ( ( 𝑀 lcm - 𝑁 ) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( ( 𝑀 ∥ ( 𝑀 lcm - 𝑁 ) ∧ 𝑁 ∥ ( 𝑀 lcm - 𝑁 ) ) → ( 𝑀 lcm 𝑁 ) ≤ ( 𝑀 lcm - 𝑁 ) ) ) |
52 |
49 50 51
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( ( 𝑀 ∥ ( 𝑀 lcm - 𝑁 ) ∧ 𝑁 ∥ ( 𝑀 lcm - 𝑁 ) ) → ( 𝑀 lcm 𝑁 ) ≤ ( 𝑀 lcm - 𝑁 ) ) ) |
53 |
37 52
|
mpd |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm 𝑁 ) ≤ ( 𝑀 lcm - 𝑁 ) ) |
54 |
|
dvdslcm |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) ) |
55 |
54
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) ) |
56 |
|
simplr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → 𝑁 ∈ ℤ ) |
57 |
|
lcmn0cl |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm 𝑁 ) ∈ ℕ ) |
58 |
57
|
nnzd |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm 𝑁 ) ∈ ℤ ) |
59 |
|
negdvdsb |
⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝑀 lcm 𝑁 ) ∈ ℤ ) → ( 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ↔ - 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) ) |
60 |
56 58 59
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ↔ - 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) ) |
61 |
60
|
anbi2d |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) ↔ ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ - 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) ) ) |
62 |
|
lcmledvds |
⊢ ( ( ( ( 𝑀 lcm 𝑁 ) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ - 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ - 𝑁 = 0 ) ) → ( ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ - 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) → ( 𝑀 lcm - 𝑁 ) ≤ ( 𝑀 lcm 𝑁 ) ) ) |
63 |
62
|
ex |
⊢ ( ( ( 𝑀 lcm 𝑁 ) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ - 𝑁 ∈ ℤ ) → ( ¬ ( 𝑀 = 0 ∨ - 𝑁 = 0 ) → ( ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ - 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) → ( 𝑀 lcm - 𝑁 ) ≤ ( 𝑀 lcm 𝑁 ) ) ) ) |
64 |
2 63
|
syl3an3 |
⊢ ( ( ( 𝑀 lcm 𝑁 ) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ¬ ( 𝑀 = 0 ∨ - 𝑁 = 0 ) → ( ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ - 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) → ( 𝑀 lcm - 𝑁 ) ≤ ( 𝑀 lcm 𝑁 ) ) ) ) |
65 |
64
|
3expib |
⊢ ( ( 𝑀 lcm 𝑁 ) ∈ ℕ → ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ¬ ( 𝑀 = 0 ∨ - 𝑁 = 0 ) → ( ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ - 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) → ( 𝑀 lcm - 𝑁 ) ≤ ( 𝑀 lcm 𝑁 ) ) ) ) ) |
66 |
57 47 43 65
|
syl3c |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ - 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) → ( 𝑀 lcm - 𝑁 ) ≤ ( 𝑀 lcm 𝑁 ) ) ) |
67 |
61 66
|
sylbid |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) → ( 𝑀 lcm - 𝑁 ) ≤ ( 𝑀 lcm 𝑁 ) ) ) |
68 |
55 67
|
mpd |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm - 𝑁 ) ≤ ( 𝑀 lcm 𝑁 ) ) |
69 |
|
lcmcl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm 𝑁 ) ∈ ℕ0 ) |
70 |
69
|
nn0red |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm 𝑁 ) ∈ ℝ ) |
71 |
30
|
nn0red |
⊢ ( ( 𝑀 ∈ ℤ ∧ - 𝑁 ∈ ℤ ) → ( 𝑀 lcm - 𝑁 ) ∈ ℝ ) |
72 |
2 71
|
sylan2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm - 𝑁 ) ∈ ℝ ) |
73 |
70 72
|
letri3d |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 lcm 𝑁 ) = ( 𝑀 lcm - 𝑁 ) ↔ ( ( 𝑀 lcm 𝑁 ) ≤ ( 𝑀 lcm - 𝑁 ) ∧ ( 𝑀 lcm - 𝑁 ) ≤ ( 𝑀 lcm 𝑁 ) ) ) ) |
74 |
73
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( ( 𝑀 lcm 𝑁 ) = ( 𝑀 lcm - 𝑁 ) ↔ ( ( 𝑀 lcm 𝑁 ) ≤ ( 𝑀 lcm - 𝑁 ) ∧ ( 𝑀 lcm - 𝑁 ) ≤ ( 𝑀 lcm 𝑁 ) ) ) ) |
75 |
53 68 74
|
mpbir2and |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm 𝑁 ) = ( 𝑀 lcm - 𝑁 ) ) |
76 |
26 75
|
pm2.61dan |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm 𝑁 ) = ( 𝑀 lcm - 𝑁 ) ) |
77 |
76
|
eqcomd |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm - 𝑁 ) = ( 𝑀 lcm 𝑁 ) ) |