| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lcm0val | ⊢ ( 𝑁  ∈  ℤ  →  ( 𝑁  lcm  0 )  =  0 ) | 
						
							| 2 |  | znegcl | ⊢ ( 𝑁  ∈  ℤ  →  - 𝑁  ∈  ℤ ) | 
						
							| 3 |  | lcm0val | ⊢ ( - 𝑁  ∈  ℤ  →  ( - 𝑁  lcm  0 )  =  0 ) | 
						
							| 4 | 2 3 | syl | ⊢ ( 𝑁  ∈  ℤ  →  ( - 𝑁  lcm  0 )  =  0 ) | 
						
							| 5 | 1 4 | eqtr4d | ⊢ ( 𝑁  ∈  ℤ  →  ( 𝑁  lcm  0 )  =  ( - 𝑁  lcm  0 ) ) | 
						
							| 6 | 5 | ad2antlr | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑀  =  0 )  →  ( 𝑁  lcm  0 )  =  ( - 𝑁  lcm  0 ) ) | 
						
							| 7 |  | oveq2 | ⊢ ( 𝑀  =  0  →  ( 𝑁  lcm  𝑀 )  =  ( 𝑁  lcm  0 ) ) | 
						
							| 8 |  | oveq2 | ⊢ ( 𝑀  =  0  →  ( - 𝑁  lcm  𝑀 )  =  ( - 𝑁  lcm  0 ) ) | 
						
							| 9 | 7 8 | eqeq12d | ⊢ ( 𝑀  =  0  →  ( ( 𝑁  lcm  𝑀 )  =  ( - 𝑁  lcm  𝑀 )  ↔  ( 𝑁  lcm  0 )  =  ( - 𝑁  lcm  0 ) ) ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑀  =  0 )  →  ( ( 𝑁  lcm  𝑀 )  =  ( - 𝑁  lcm  𝑀 )  ↔  ( 𝑁  lcm  0 )  =  ( - 𝑁  lcm  0 ) ) ) | 
						
							| 11 | 6 10 | mpbird | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑀  =  0 )  →  ( 𝑁  lcm  𝑀 )  =  ( - 𝑁  lcm  𝑀 ) ) | 
						
							| 12 |  | lcmcom | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  lcm  𝑁 )  =  ( 𝑁  lcm  𝑀 ) ) | 
						
							| 13 |  | lcmcom | ⊢ ( ( 𝑀  ∈  ℤ  ∧  - 𝑁  ∈  ℤ )  →  ( 𝑀  lcm  - 𝑁 )  =  ( - 𝑁  lcm  𝑀 ) ) | 
						
							| 14 | 2 13 | sylan2 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  lcm  - 𝑁 )  =  ( - 𝑁  lcm  𝑀 ) ) | 
						
							| 15 | 12 14 | eqeq12d | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑀  lcm  𝑁 )  =  ( 𝑀  lcm  - 𝑁 )  ↔  ( 𝑁  lcm  𝑀 )  =  ( - 𝑁  lcm  𝑀 ) ) ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑀  =  0 )  →  ( ( 𝑀  lcm  𝑁 )  =  ( 𝑀  lcm  - 𝑁 )  ↔  ( 𝑁  lcm  𝑀 )  =  ( - 𝑁  lcm  𝑀 ) ) ) | 
						
							| 17 | 11 16 | mpbird | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑀  =  0 )  →  ( 𝑀  lcm  𝑁 )  =  ( 𝑀  lcm  - 𝑁 ) ) | 
						
							| 18 |  | neg0 | ⊢ - 0  =  0 | 
						
							| 19 | 18 | oveq2i | ⊢ ( 𝑀  lcm  - 0 )  =  ( 𝑀  lcm  0 ) | 
						
							| 20 | 19 | eqcomi | ⊢ ( 𝑀  lcm  0 )  =  ( 𝑀  lcm  - 0 ) | 
						
							| 21 |  | oveq2 | ⊢ ( 𝑁  =  0  →  ( 𝑀  lcm  𝑁 )  =  ( 𝑀  lcm  0 ) ) | 
						
							| 22 |  | negeq | ⊢ ( 𝑁  =  0  →  - 𝑁  =  - 0 ) | 
						
							| 23 | 22 | oveq2d | ⊢ ( 𝑁  =  0  →  ( 𝑀  lcm  - 𝑁 )  =  ( 𝑀  lcm  - 0 ) ) | 
						
							| 24 | 20 21 23 | 3eqtr4a | ⊢ ( 𝑁  =  0  →  ( 𝑀  lcm  𝑁 )  =  ( 𝑀  lcm  - 𝑁 ) ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑁  =  0 )  →  ( 𝑀  lcm  𝑁 )  =  ( 𝑀  lcm  - 𝑁 ) ) | 
						
							| 26 | 17 25 | jaodan | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  ( 𝑀  lcm  𝑁 )  =  ( 𝑀  lcm  - 𝑁 ) ) | 
						
							| 27 |  | dvdslcm | ⊢ ( ( 𝑀  ∈  ℤ  ∧  - 𝑁  ∈  ℤ )  →  ( 𝑀  ∥  ( 𝑀  lcm  - 𝑁 )  ∧  - 𝑁  ∥  ( 𝑀  lcm  - 𝑁 ) ) ) | 
						
							| 28 | 2 27 | sylan2 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  ∥  ( 𝑀  lcm  - 𝑁 )  ∧  - 𝑁  ∥  ( 𝑀  lcm  - 𝑁 ) ) ) | 
						
							| 29 |  | simpr | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  𝑁  ∈  ℤ ) | 
						
							| 30 |  | lcmcl | ⊢ ( ( 𝑀  ∈  ℤ  ∧  - 𝑁  ∈  ℤ )  →  ( 𝑀  lcm  - 𝑁 )  ∈  ℕ0 ) | 
						
							| 31 | 2 30 | sylan2 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  lcm  - 𝑁 )  ∈  ℕ0 ) | 
						
							| 32 | 31 | nn0zd | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  lcm  - 𝑁 )  ∈  ℤ ) | 
						
							| 33 |  | negdvdsb | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ( 𝑀  lcm  - 𝑁 )  ∈  ℤ )  →  ( 𝑁  ∥  ( 𝑀  lcm  - 𝑁 )  ↔  - 𝑁  ∥  ( 𝑀  lcm  - 𝑁 ) ) ) | 
						
							| 34 | 29 32 33 | syl2anc | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑁  ∥  ( 𝑀  lcm  - 𝑁 )  ↔  - 𝑁  ∥  ( 𝑀  lcm  - 𝑁 ) ) ) | 
						
							| 35 | 34 | anbi2d | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑀  ∥  ( 𝑀  lcm  - 𝑁 )  ∧  𝑁  ∥  ( 𝑀  lcm  - 𝑁 ) )  ↔  ( 𝑀  ∥  ( 𝑀  lcm  - 𝑁 )  ∧  - 𝑁  ∥  ( 𝑀  lcm  - 𝑁 ) ) ) ) | 
						
							| 36 | 28 35 | mpbird | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  ∥  ( 𝑀  lcm  - 𝑁 )  ∧  𝑁  ∥  ( 𝑀  lcm  - 𝑁 ) ) ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  ( 𝑀  ∥  ( 𝑀  lcm  - 𝑁 )  ∧  𝑁  ∥  ( 𝑀  lcm  - 𝑁 ) ) ) | 
						
							| 38 |  | zcn | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ℂ ) | 
						
							| 39 | 38 | negeq0d | ⊢ ( 𝑁  ∈  ℤ  →  ( 𝑁  =  0  ↔  - 𝑁  =  0 ) ) | 
						
							| 40 | 39 | orbi2d | ⊢ ( 𝑁  ∈  ℤ  →  ( ( 𝑀  =  0  ∨  𝑁  =  0 )  ↔  ( 𝑀  =  0  ∨  - 𝑁  =  0 ) ) ) | 
						
							| 41 | 40 | notbid | ⊢ ( 𝑁  ∈  ℤ  →  ( ¬  ( 𝑀  =  0  ∨  𝑁  =  0 )  ↔  ¬  ( 𝑀  =  0  ∨  - 𝑁  =  0 ) ) ) | 
						
							| 42 | 41 | biimpa | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ¬  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  ¬  ( 𝑀  =  0  ∨  - 𝑁  =  0 ) ) | 
						
							| 43 | 42 | adantll | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  ¬  ( 𝑀  =  0  ∨  - 𝑁  =  0 ) ) | 
						
							| 44 |  | lcmn0cl | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  - 𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∨  - 𝑁  =  0 ) )  →  ( 𝑀  lcm  - 𝑁 )  ∈  ℕ ) | 
						
							| 45 | 2 44 | sylanl2 | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∨  - 𝑁  =  0 ) )  →  ( 𝑀  lcm  - 𝑁 )  ∈  ℕ ) | 
						
							| 46 | 43 45 | syldan | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  ( 𝑀  lcm  - 𝑁 )  ∈  ℕ ) | 
						
							| 47 |  | simpl | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ ) ) | 
						
							| 48 |  | 3anass | ⊢ ( ( ( 𝑀  lcm  - 𝑁 )  ∈  ℕ  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ↔  ( ( 𝑀  lcm  - 𝑁 )  ∈  ℕ  ∧  ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ ) ) ) | 
						
							| 49 | 46 47 48 | sylanbrc | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  ( ( 𝑀  lcm  - 𝑁 )  ∈  ℕ  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ ) ) | 
						
							| 50 |  | simpr | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  ¬  ( 𝑀  =  0  ∨  𝑁  =  0 ) ) | 
						
							| 51 |  | lcmledvds | ⊢ ( ( ( ( 𝑀  lcm  - 𝑁 )  ∈  ℕ  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  ( ( 𝑀  ∥  ( 𝑀  lcm  - 𝑁 )  ∧  𝑁  ∥  ( 𝑀  lcm  - 𝑁 ) )  →  ( 𝑀  lcm  𝑁 )  ≤  ( 𝑀  lcm  - 𝑁 ) ) ) | 
						
							| 52 | 49 50 51 | syl2anc | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  ( ( 𝑀  ∥  ( 𝑀  lcm  - 𝑁 )  ∧  𝑁  ∥  ( 𝑀  lcm  - 𝑁 ) )  →  ( 𝑀  lcm  𝑁 )  ≤  ( 𝑀  lcm  - 𝑁 ) ) ) | 
						
							| 53 | 37 52 | mpd | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  ( 𝑀  lcm  𝑁 )  ≤  ( 𝑀  lcm  - 𝑁 ) ) | 
						
							| 54 |  | dvdslcm | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  ∥  ( 𝑀  lcm  𝑁 )  ∧  𝑁  ∥  ( 𝑀  lcm  𝑁 ) ) ) | 
						
							| 55 | 54 | adantr | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  ( 𝑀  ∥  ( 𝑀  lcm  𝑁 )  ∧  𝑁  ∥  ( 𝑀  lcm  𝑁 ) ) ) | 
						
							| 56 |  | simplr | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  𝑁  ∈  ℤ ) | 
						
							| 57 |  | lcmn0cl | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  ( 𝑀  lcm  𝑁 )  ∈  ℕ ) | 
						
							| 58 | 57 | nnzd | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  ( 𝑀  lcm  𝑁 )  ∈  ℤ ) | 
						
							| 59 |  | negdvdsb | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ( 𝑀  lcm  𝑁 )  ∈  ℤ )  →  ( 𝑁  ∥  ( 𝑀  lcm  𝑁 )  ↔  - 𝑁  ∥  ( 𝑀  lcm  𝑁 ) ) ) | 
						
							| 60 | 56 58 59 | syl2anc | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  ( 𝑁  ∥  ( 𝑀  lcm  𝑁 )  ↔  - 𝑁  ∥  ( 𝑀  lcm  𝑁 ) ) ) | 
						
							| 61 | 60 | anbi2d | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  ( ( 𝑀  ∥  ( 𝑀  lcm  𝑁 )  ∧  𝑁  ∥  ( 𝑀  lcm  𝑁 ) )  ↔  ( 𝑀  ∥  ( 𝑀  lcm  𝑁 )  ∧  - 𝑁  ∥  ( 𝑀  lcm  𝑁 ) ) ) ) | 
						
							| 62 |  | lcmledvds | ⊢ ( ( ( ( 𝑀  lcm  𝑁 )  ∈  ℕ  ∧  𝑀  ∈  ℤ  ∧  - 𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∨  - 𝑁  =  0 ) )  →  ( ( 𝑀  ∥  ( 𝑀  lcm  𝑁 )  ∧  - 𝑁  ∥  ( 𝑀  lcm  𝑁 ) )  →  ( 𝑀  lcm  - 𝑁 )  ≤  ( 𝑀  lcm  𝑁 ) ) ) | 
						
							| 63 | 62 | ex | ⊢ ( ( ( 𝑀  lcm  𝑁 )  ∈  ℕ  ∧  𝑀  ∈  ℤ  ∧  - 𝑁  ∈  ℤ )  →  ( ¬  ( 𝑀  =  0  ∨  - 𝑁  =  0 )  →  ( ( 𝑀  ∥  ( 𝑀  lcm  𝑁 )  ∧  - 𝑁  ∥  ( 𝑀  lcm  𝑁 ) )  →  ( 𝑀  lcm  - 𝑁 )  ≤  ( 𝑀  lcm  𝑁 ) ) ) ) | 
						
							| 64 | 2 63 | syl3an3 | ⊢ ( ( ( 𝑀  lcm  𝑁 )  ∈  ℕ  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ¬  ( 𝑀  =  0  ∨  - 𝑁  =  0 )  →  ( ( 𝑀  ∥  ( 𝑀  lcm  𝑁 )  ∧  - 𝑁  ∥  ( 𝑀  lcm  𝑁 ) )  →  ( 𝑀  lcm  - 𝑁 )  ≤  ( 𝑀  lcm  𝑁 ) ) ) ) | 
						
							| 65 | 64 | 3expib | ⊢ ( ( 𝑀  lcm  𝑁 )  ∈  ℕ  →  ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ¬  ( 𝑀  =  0  ∨  - 𝑁  =  0 )  →  ( ( 𝑀  ∥  ( 𝑀  lcm  𝑁 )  ∧  - 𝑁  ∥  ( 𝑀  lcm  𝑁 ) )  →  ( 𝑀  lcm  - 𝑁 )  ≤  ( 𝑀  lcm  𝑁 ) ) ) ) ) | 
						
							| 66 | 57 47 43 65 | syl3c | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  ( ( 𝑀  ∥  ( 𝑀  lcm  𝑁 )  ∧  - 𝑁  ∥  ( 𝑀  lcm  𝑁 ) )  →  ( 𝑀  lcm  - 𝑁 )  ≤  ( 𝑀  lcm  𝑁 ) ) ) | 
						
							| 67 | 61 66 | sylbid | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  ( ( 𝑀  ∥  ( 𝑀  lcm  𝑁 )  ∧  𝑁  ∥  ( 𝑀  lcm  𝑁 ) )  →  ( 𝑀  lcm  - 𝑁 )  ≤  ( 𝑀  lcm  𝑁 ) ) ) | 
						
							| 68 | 55 67 | mpd | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  ( 𝑀  lcm  - 𝑁 )  ≤  ( 𝑀  lcm  𝑁 ) ) | 
						
							| 69 |  | lcmcl | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  lcm  𝑁 )  ∈  ℕ0 ) | 
						
							| 70 | 69 | nn0red | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  lcm  𝑁 )  ∈  ℝ ) | 
						
							| 71 | 30 | nn0red | ⊢ ( ( 𝑀  ∈  ℤ  ∧  - 𝑁  ∈  ℤ )  →  ( 𝑀  lcm  - 𝑁 )  ∈  ℝ ) | 
						
							| 72 | 2 71 | sylan2 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  lcm  - 𝑁 )  ∈  ℝ ) | 
						
							| 73 | 70 72 | letri3d | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑀  lcm  𝑁 )  =  ( 𝑀  lcm  - 𝑁 )  ↔  ( ( 𝑀  lcm  𝑁 )  ≤  ( 𝑀  lcm  - 𝑁 )  ∧  ( 𝑀  lcm  - 𝑁 )  ≤  ( 𝑀  lcm  𝑁 ) ) ) ) | 
						
							| 74 | 73 | adantr | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  ( ( 𝑀  lcm  𝑁 )  =  ( 𝑀  lcm  - 𝑁 )  ↔  ( ( 𝑀  lcm  𝑁 )  ≤  ( 𝑀  lcm  - 𝑁 )  ∧  ( 𝑀  lcm  - 𝑁 )  ≤  ( 𝑀  lcm  𝑁 ) ) ) ) | 
						
							| 75 | 53 68 74 | mpbir2and | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  ( 𝑀  lcm  𝑁 )  =  ( 𝑀  lcm  - 𝑁 ) ) | 
						
							| 76 | 26 75 | pm2.61dan | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  lcm  𝑁 )  =  ( 𝑀  lcm  - 𝑁 ) ) | 
						
							| 77 | 76 | eqcomd | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  lcm  - 𝑁 )  =  ( 𝑀  lcm  𝑁 ) ) |