| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqeq1 | ⊢ ( 𝑥  =  𝑀  →  ( 𝑥  =  0  ↔  𝑀  =  0 ) ) | 
						
							| 2 | 1 | orbi1d | ⊢ ( 𝑥  =  𝑀  →  ( ( 𝑥  =  0  ∨  𝑦  =  0 )  ↔  ( 𝑀  =  0  ∨  𝑦  =  0 ) ) ) | 
						
							| 3 |  | breq1 | ⊢ ( 𝑥  =  𝑀  →  ( 𝑥  ∥  𝑛  ↔  𝑀  ∥  𝑛 ) ) | 
						
							| 4 | 3 | anbi1d | ⊢ ( 𝑥  =  𝑀  →  ( ( 𝑥  ∥  𝑛  ∧  𝑦  ∥  𝑛 )  ↔  ( 𝑀  ∥  𝑛  ∧  𝑦  ∥  𝑛 ) ) ) | 
						
							| 5 | 4 | rabbidv | ⊢ ( 𝑥  =  𝑀  →  { 𝑛  ∈  ℕ  ∣  ( 𝑥  ∥  𝑛  ∧  𝑦  ∥  𝑛 ) }  =  { 𝑛  ∈  ℕ  ∣  ( 𝑀  ∥  𝑛  ∧  𝑦  ∥  𝑛 ) } ) | 
						
							| 6 | 5 | infeq1d | ⊢ ( 𝑥  =  𝑀  →  inf ( { 𝑛  ∈  ℕ  ∣  ( 𝑥  ∥  𝑛  ∧  𝑦  ∥  𝑛 ) } ,  ℝ ,   <  )  =  inf ( { 𝑛  ∈  ℕ  ∣  ( 𝑀  ∥  𝑛  ∧  𝑦  ∥  𝑛 ) } ,  ℝ ,   <  ) ) | 
						
							| 7 | 2 6 | ifbieq2d | ⊢ ( 𝑥  =  𝑀  →  if ( ( 𝑥  =  0  ∨  𝑦  =  0 ) ,  0 ,  inf ( { 𝑛  ∈  ℕ  ∣  ( 𝑥  ∥  𝑛  ∧  𝑦  ∥  𝑛 ) } ,  ℝ ,   <  ) )  =  if ( ( 𝑀  =  0  ∨  𝑦  =  0 ) ,  0 ,  inf ( { 𝑛  ∈  ℕ  ∣  ( 𝑀  ∥  𝑛  ∧  𝑦  ∥  𝑛 ) } ,  ℝ ,   <  ) ) ) | 
						
							| 8 |  | eqeq1 | ⊢ ( 𝑦  =  𝑁  →  ( 𝑦  =  0  ↔  𝑁  =  0 ) ) | 
						
							| 9 | 8 | orbi2d | ⊢ ( 𝑦  =  𝑁  →  ( ( 𝑀  =  0  ∨  𝑦  =  0 )  ↔  ( 𝑀  =  0  ∨  𝑁  =  0 ) ) ) | 
						
							| 10 |  | breq1 | ⊢ ( 𝑦  =  𝑁  →  ( 𝑦  ∥  𝑛  ↔  𝑁  ∥  𝑛 ) ) | 
						
							| 11 | 10 | anbi2d | ⊢ ( 𝑦  =  𝑁  →  ( ( 𝑀  ∥  𝑛  ∧  𝑦  ∥  𝑛 )  ↔  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) ) ) | 
						
							| 12 | 11 | rabbidv | ⊢ ( 𝑦  =  𝑁  →  { 𝑛  ∈  ℕ  ∣  ( 𝑀  ∥  𝑛  ∧  𝑦  ∥  𝑛 ) }  =  { 𝑛  ∈  ℕ  ∣  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) } ) | 
						
							| 13 | 12 | infeq1d | ⊢ ( 𝑦  =  𝑁  →  inf ( { 𝑛  ∈  ℕ  ∣  ( 𝑀  ∥  𝑛  ∧  𝑦  ∥  𝑛 ) } ,  ℝ ,   <  )  =  inf ( { 𝑛  ∈  ℕ  ∣  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) } ,  ℝ ,   <  ) ) | 
						
							| 14 | 9 13 | ifbieq2d | ⊢ ( 𝑦  =  𝑁  →  if ( ( 𝑀  =  0  ∨  𝑦  =  0 ) ,  0 ,  inf ( { 𝑛  ∈  ℕ  ∣  ( 𝑀  ∥  𝑛  ∧  𝑦  ∥  𝑛 ) } ,  ℝ ,   <  ) )  =  if ( ( 𝑀  =  0  ∨  𝑁  =  0 ) ,  0 ,  inf ( { 𝑛  ∈  ℕ  ∣  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) } ,  ℝ ,   <  ) ) ) | 
						
							| 15 |  | df-lcm | ⊢  lcm   =  ( 𝑥  ∈  ℤ ,  𝑦  ∈  ℤ  ↦  if ( ( 𝑥  =  0  ∨  𝑦  =  0 ) ,  0 ,  inf ( { 𝑛  ∈  ℕ  ∣  ( 𝑥  ∥  𝑛  ∧  𝑦  ∥  𝑛 ) } ,  ℝ ,   <  ) ) ) | 
						
							| 16 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 17 |  | ltso | ⊢  <   Or  ℝ | 
						
							| 18 | 17 | infex | ⊢ inf ( { 𝑛  ∈  ℕ  ∣  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) } ,  ℝ ,   <  )  ∈  V | 
						
							| 19 | 16 18 | ifex | ⊢ if ( ( 𝑀  =  0  ∨  𝑁  =  0 ) ,  0 ,  inf ( { 𝑛  ∈  ℕ  ∣  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) } ,  ℝ ,   <  ) )  ∈  V | 
						
							| 20 | 7 14 15 19 | ovmpo | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  lcm  𝑁 )  =  if ( ( 𝑀  =  0  ∨  𝑁  =  0 ) ,  0 ,  inf ( { 𝑛  ∈  ℕ  ∣  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) } ,  ℝ ,   <  ) ) ) |