Metamath Proof Explorer


Theorem lcomf

Description: A linear-combination sum is a function. (Contributed by Stefan O'Rear, 28-Feb-2015)

Ref Expression
Hypotheses lcomf.f 𝐹 = ( Scalar ‘ 𝑊 )
lcomf.k 𝐾 = ( Base ‘ 𝐹 )
lcomf.s · = ( ·𝑠𝑊 )
lcomf.b 𝐵 = ( Base ‘ 𝑊 )
lcomf.w ( 𝜑𝑊 ∈ LMod )
lcomf.g ( 𝜑𝐺 : 𝐼𝐾 )
lcomf.h ( 𝜑𝐻 : 𝐼𝐵 )
lcomf.i ( 𝜑𝐼𝑉 )
Assertion lcomf ( 𝜑 → ( 𝐺f · 𝐻 ) : 𝐼𝐵 )

Proof

Step Hyp Ref Expression
1 lcomf.f 𝐹 = ( Scalar ‘ 𝑊 )
2 lcomf.k 𝐾 = ( Base ‘ 𝐹 )
3 lcomf.s · = ( ·𝑠𝑊 )
4 lcomf.b 𝐵 = ( Base ‘ 𝑊 )
5 lcomf.w ( 𝜑𝑊 ∈ LMod )
6 lcomf.g ( 𝜑𝐺 : 𝐼𝐾 )
7 lcomf.h ( 𝜑𝐻 : 𝐼𝐵 )
8 lcomf.i ( 𝜑𝐼𝑉 )
9 4 1 3 2 lmodvscl ( ( 𝑊 ∈ LMod ∧ 𝑥𝐾𝑦𝐵 ) → ( 𝑥 · 𝑦 ) ∈ 𝐵 )
10 9 3expb ( ( 𝑊 ∈ LMod ∧ ( 𝑥𝐾𝑦𝐵 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝐵 )
11 5 10 sylan ( ( 𝜑 ∧ ( 𝑥𝐾𝑦𝐵 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝐵 )
12 inidm ( 𝐼𝐼 ) = 𝐼
13 11 6 7 8 8 12 off ( 𝜑 → ( 𝐺f · 𝐻 ) : 𝐼𝐵 )