Step |
Hyp |
Ref |
Expression |
1 |
|
lcomf.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
2 |
|
lcomf.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
3 |
|
lcomf.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
4 |
|
lcomf.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
5 |
|
lcomf.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
6 |
|
lcomf.g |
⊢ ( 𝜑 → 𝐺 : 𝐼 ⟶ 𝐾 ) |
7 |
|
lcomf.h |
⊢ ( 𝜑 → 𝐻 : 𝐼 ⟶ 𝐵 ) |
8 |
|
lcomf.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
9 |
|
lcomfsupp.z |
⊢ 0 = ( 0g ‘ 𝑊 ) |
10 |
|
lcomfsupp.y |
⊢ 𝑌 = ( 0g ‘ 𝐹 ) |
11 |
|
lcomfsupp.j |
⊢ ( 𝜑 → 𝐺 finSupp 𝑌 ) |
12 |
11
|
fsuppimpd |
⊢ ( 𝜑 → ( 𝐺 supp 𝑌 ) ∈ Fin ) |
13 |
1 2 3 4 5 6 7 8
|
lcomf |
⊢ ( 𝜑 → ( 𝐺 ∘f · 𝐻 ) : 𝐼 ⟶ 𝐵 ) |
14 |
|
eldifi |
⊢ ( 𝑥 ∈ ( 𝐼 ∖ ( 𝐺 supp 𝑌 ) ) → 𝑥 ∈ 𝐼 ) |
15 |
6
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn 𝐼 ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐺 Fn 𝐼 ) |
17 |
7
|
ffnd |
⊢ ( 𝜑 → 𝐻 Fn 𝐼 ) |
18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐻 Fn 𝐼 ) |
19 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐼 ∈ 𝑉 ) |
20 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑥 ∈ 𝐼 ) |
21 |
|
fnfvof |
⊢ ( ( ( 𝐺 Fn 𝐼 ∧ 𝐻 Fn 𝐼 ) ∧ ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼 ) ) → ( ( 𝐺 ∘f · 𝐻 ) ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) · ( 𝐻 ‘ 𝑥 ) ) ) |
22 |
16 18 19 20 21
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐺 ∘f · 𝐻 ) ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) · ( 𝐻 ‘ 𝑥 ) ) ) |
23 |
14 22
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ ( 𝐺 supp 𝑌 ) ) ) → ( ( 𝐺 ∘f · 𝐻 ) ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) · ( 𝐻 ‘ 𝑥 ) ) ) |
24 |
|
ssidd |
⊢ ( 𝜑 → ( 𝐺 supp 𝑌 ) ⊆ ( 𝐺 supp 𝑌 ) ) |
25 |
10
|
fvexi |
⊢ 𝑌 ∈ V |
26 |
25
|
a1i |
⊢ ( 𝜑 → 𝑌 ∈ V ) |
27 |
6 24 8 26
|
suppssr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ ( 𝐺 supp 𝑌 ) ) ) → ( 𝐺 ‘ 𝑥 ) = 𝑌 ) |
28 |
27
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ ( 𝐺 supp 𝑌 ) ) ) → ( ( 𝐺 ‘ 𝑥 ) · ( 𝐻 ‘ 𝑥 ) ) = ( 𝑌 · ( 𝐻 ‘ 𝑥 ) ) ) |
29 |
7
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐻 ‘ 𝑥 ) ∈ 𝐵 ) |
30 |
4 1 3 10 9
|
lmod0vs |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐻 ‘ 𝑥 ) ∈ 𝐵 ) → ( 𝑌 · ( 𝐻 ‘ 𝑥 ) ) = 0 ) |
31 |
5 29 30
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑌 · ( 𝐻 ‘ 𝑥 ) ) = 0 ) |
32 |
14 31
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ ( 𝐺 supp 𝑌 ) ) ) → ( 𝑌 · ( 𝐻 ‘ 𝑥 ) ) = 0 ) |
33 |
23 28 32
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ ( 𝐺 supp 𝑌 ) ) ) → ( ( 𝐺 ∘f · 𝐻 ) ‘ 𝑥 ) = 0 ) |
34 |
13 33
|
suppss |
⊢ ( 𝜑 → ( ( 𝐺 ∘f · 𝐻 ) supp 0 ) ⊆ ( 𝐺 supp 𝑌 ) ) |
35 |
12 34
|
ssfid |
⊢ ( 𝜑 → ( ( 𝐺 ∘f · 𝐻 ) supp 0 ) ∈ Fin ) |
36 |
15 17 8 8
|
offun |
⊢ ( 𝜑 → Fun ( 𝐺 ∘f · 𝐻 ) ) |
37 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐺 ∘f · 𝐻 ) ∈ V ) |
38 |
9
|
fvexi |
⊢ 0 ∈ V |
39 |
38
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
40 |
|
funisfsupp |
⊢ ( ( Fun ( 𝐺 ∘f · 𝐻 ) ∧ ( 𝐺 ∘f · 𝐻 ) ∈ V ∧ 0 ∈ V ) → ( ( 𝐺 ∘f · 𝐻 ) finSupp 0 ↔ ( ( 𝐺 ∘f · 𝐻 ) supp 0 ) ∈ Fin ) ) |
41 |
36 37 39 40
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐺 ∘f · 𝐻 ) finSupp 0 ↔ ( ( 𝐺 ∘f · 𝐻 ) supp 0 ) ∈ Fin ) ) |
42 |
35 41
|
mpbird |
⊢ ( 𝜑 → ( 𝐺 ∘f · 𝐻 ) finSupp 0 ) |