| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lcomf.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 2 |  | lcomf.k | ⊢ 𝐾  =  ( Base ‘ 𝐹 ) | 
						
							| 3 |  | lcomf.s | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 4 |  | lcomf.b | ⊢ 𝐵  =  ( Base ‘ 𝑊 ) | 
						
							| 5 |  | lcomf.w | ⊢ ( 𝜑  →  𝑊  ∈  LMod ) | 
						
							| 6 |  | lcomf.g | ⊢ ( 𝜑  →  𝐺 : 𝐼 ⟶ 𝐾 ) | 
						
							| 7 |  | lcomf.h | ⊢ ( 𝜑  →  𝐻 : 𝐼 ⟶ 𝐵 ) | 
						
							| 8 |  | lcomf.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑉 ) | 
						
							| 9 |  | lcomfsupp.z | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 10 |  | lcomfsupp.y | ⊢ 𝑌  =  ( 0g ‘ 𝐹 ) | 
						
							| 11 |  | lcomfsupp.j | ⊢ ( 𝜑  →  𝐺  finSupp  𝑌 ) | 
						
							| 12 | 11 | fsuppimpd | ⊢ ( 𝜑  →  ( 𝐺  supp  𝑌 )  ∈  Fin ) | 
						
							| 13 | 1 2 3 4 5 6 7 8 | lcomf | ⊢ ( 𝜑  →  ( 𝐺  ∘f   ·  𝐻 ) : 𝐼 ⟶ 𝐵 ) | 
						
							| 14 |  | eldifi | ⊢ ( 𝑥  ∈  ( 𝐼  ∖  ( 𝐺  supp  𝑌 ) )  →  𝑥  ∈  𝐼 ) | 
						
							| 15 | 6 | ffnd | ⊢ ( 𝜑  →  𝐺  Fn  𝐼 ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝐺  Fn  𝐼 ) | 
						
							| 17 | 7 | ffnd | ⊢ ( 𝜑  →  𝐻  Fn  𝐼 ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝐻  Fn  𝐼 ) | 
						
							| 19 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝐼  ∈  𝑉 ) | 
						
							| 20 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝑥  ∈  𝐼 ) | 
						
							| 21 |  | fnfvof | ⊢ ( ( ( 𝐺  Fn  𝐼  ∧  𝐻  Fn  𝐼 )  ∧  ( 𝐼  ∈  𝑉  ∧  𝑥  ∈  𝐼 ) )  →  ( ( 𝐺  ∘f   ·  𝐻 ) ‘ 𝑥 )  =  ( ( 𝐺 ‘ 𝑥 )  ·  ( 𝐻 ‘ 𝑥 ) ) ) | 
						
							| 22 | 16 18 19 20 21 | syl22anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( ( 𝐺  ∘f   ·  𝐻 ) ‘ 𝑥 )  =  ( ( 𝐺 ‘ 𝑥 )  ·  ( 𝐻 ‘ 𝑥 ) ) ) | 
						
							| 23 | 14 22 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐼  ∖  ( 𝐺  supp  𝑌 ) ) )  →  ( ( 𝐺  ∘f   ·  𝐻 ) ‘ 𝑥 )  =  ( ( 𝐺 ‘ 𝑥 )  ·  ( 𝐻 ‘ 𝑥 ) ) ) | 
						
							| 24 |  | ssidd | ⊢ ( 𝜑  →  ( 𝐺  supp  𝑌 )  ⊆  ( 𝐺  supp  𝑌 ) ) | 
						
							| 25 | 10 | fvexi | ⊢ 𝑌  ∈  V | 
						
							| 26 | 25 | a1i | ⊢ ( 𝜑  →  𝑌  ∈  V ) | 
						
							| 27 | 6 24 8 26 | suppssr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐼  ∖  ( 𝐺  supp  𝑌 ) ) )  →  ( 𝐺 ‘ 𝑥 )  =  𝑌 ) | 
						
							| 28 | 27 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐼  ∖  ( 𝐺  supp  𝑌 ) ) )  →  ( ( 𝐺 ‘ 𝑥 )  ·  ( 𝐻 ‘ 𝑥 ) )  =  ( 𝑌  ·  ( 𝐻 ‘ 𝑥 ) ) ) | 
						
							| 29 | 7 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝐻 ‘ 𝑥 )  ∈  𝐵 ) | 
						
							| 30 | 4 1 3 10 9 | lmod0vs | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( 𝐻 ‘ 𝑥 )  ∈  𝐵 )  →  ( 𝑌  ·  ( 𝐻 ‘ 𝑥 ) )  =   0  ) | 
						
							| 31 | 5 29 30 | syl2an2r | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝑌  ·  ( 𝐻 ‘ 𝑥 ) )  =   0  ) | 
						
							| 32 | 14 31 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐼  ∖  ( 𝐺  supp  𝑌 ) ) )  →  ( 𝑌  ·  ( 𝐻 ‘ 𝑥 ) )  =   0  ) | 
						
							| 33 | 23 28 32 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐼  ∖  ( 𝐺  supp  𝑌 ) ) )  →  ( ( 𝐺  ∘f   ·  𝐻 ) ‘ 𝑥 )  =   0  ) | 
						
							| 34 | 13 33 | suppss | ⊢ ( 𝜑  →  ( ( 𝐺  ∘f   ·  𝐻 )  supp   0  )  ⊆  ( 𝐺  supp  𝑌 ) ) | 
						
							| 35 | 12 34 | ssfid | ⊢ ( 𝜑  →  ( ( 𝐺  ∘f   ·  𝐻 )  supp   0  )  ∈  Fin ) | 
						
							| 36 | 15 17 8 8 | offun | ⊢ ( 𝜑  →  Fun  ( 𝐺  ∘f   ·  𝐻 ) ) | 
						
							| 37 |  | ovexd | ⊢ ( 𝜑  →  ( 𝐺  ∘f   ·  𝐻 )  ∈  V ) | 
						
							| 38 | 9 | fvexi | ⊢  0   ∈  V | 
						
							| 39 | 38 | a1i | ⊢ ( 𝜑  →   0   ∈  V ) | 
						
							| 40 |  | funisfsupp | ⊢ ( ( Fun  ( 𝐺  ∘f   ·  𝐻 )  ∧  ( 𝐺  ∘f   ·  𝐻 )  ∈  V  ∧   0   ∈  V )  →  ( ( 𝐺  ∘f   ·  𝐻 )  finSupp   0   ↔  ( ( 𝐺  ∘f   ·  𝐻 )  supp   0  )  ∈  Fin ) ) | 
						
							| 41 | 36 37 39 40 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝐺  ∘f   ·  𝐻 )  finSupp   0   ↔  ( ( 𝐺  ∘f   ·  𝐻 )  supp   0  )  ∈  Fin ) ) | 
						
							| 42 | 35 41 | mpbird | ⊢ ( 𝜑  →  ( 𝐺  ∘f   ·  𝐻 )  finSupp   0  ) |