Metamath Proof Explorer


Theorem lcomfsupp

Description: A linear-combination sum is finitely supported if the coefficients are. (Contributed by Stefan O'Rear, 28-Feb-2015) (Revised by AV, 15-Jul-2019)

Ref Expression
Hypotheses lcomf.f 𝐹 = ( Scalar ‘ 𝑊 )
lcomf.k 𝐾 = ( Base ‘ 𝐹 )
lcomf.s · = ( ·𝑠𝑊 )
lcomf.b 𝐵 = ( Base ‘ 𝑊 )
lcomf.w ( 𝜑𝑊 ∈ LMod )
lcomf.g ( 𝜑𝐺 : 𝐼𝐾 )
lcomf.h ( 𝜑𝐻 : 𝐼𝐵 )
lcomf.i ( 𝜑𝐼𝑉 )
lcomfsupp.z 0 = ( 0g𝑊 )
lcomfsupp.y 𝑌 = ( 0g𝐹 )
lcomfsupp.j ( 𝜑𝐺 finSupp 𝑌 )
Assertion lcomfsupp ( 𝜑 → ( 𝐺f · 𝐻 ) finSupp 0 )

Proof

Step Hyp Ref Expression
1 lcomf.f 𝐹 = ( Scalar ‘ 𝑊 )
2 lcomf.k 𝐾 = ( Base ‘ 𝐹 )
3 lcomf.s · = ( ·𝑠𝑊 )
4 lcomf.b 𝐵 = ( Base ‘ 𝑊 )
5 lcomf.w ( 𝜑𝑊 ∈ LMod )
6 lcomf.g ( 𝜑𝐺 : 𝐼𝐾 )
7 lcomf.h ( 𝜑𝐻 : 𝐼𝐵 )
8 lcomf.i ( 𝜑𝐼𝑉 )
9 lcomfsupp.z 0 = ( 0g𝑊 )
10 lcomfsupp.y 𝑌 = ( 0g𝐹 )
11 lcomfsupp.j ( 𝜑𝐺 finSupp 𝑌 )
12 11 fsuppimpd ( 𝜑 → ( 𝐺 supp 𝑌 ) ∈ Fin )
13 1 2 3 4 5 6 7 8 lcomf ( 𝜑 → ( 𝐺f · 𝐻 ) : 𝐼𝐵 )
14 eldifi ( 𝑥 ∈ ( 𝐼 ∖ ( 𝐺 supp 𝑌 ) ) → 𝑥𝐼 )
15 6 ffnd ( 𝜑𝐺 Fn 𝐼 )
16 15 adantr ( ( 𝜑𝑥𝐼 ) → 𝐺 Fn 𝐼 )
17 7 ffnd ( 𝜑𝐻 Fn 𝐼 )
18 17 adantr ( ( 𝜑𝑥𝐼 ) → 𝐻 Fn 𝐼 )
19 8 adantr ( ( 𝜑𝑥𝐼 ) → 𝐼𝑉 )
20 simpr ( ( 𝜑𝑥𝐼 ) → 𝑥𝐼 )
21 fnfvof ( ( ( 𝐺 Fn 𝐼𝐻 Fn 𝐼 ) ∧ ( 𝐼𝑉𝑥𝐼 ) ) → ( ( 𝐺f · 𝐻 ) ‘ 𝑥 ) = ( ( 𝐺𝑥 ) · ( 𝐻𝑥 ) ) )
22 16 18 19 20 21 syl22anc ( ( 𝜑𝑥𝐼 ) → ( ( 𝐺f · 𝐻 ) ‘ 𝑥 ) = ( ( 𝐺𝑥 ) · ( 𝐻𝑥 ) ) )
23 14 22 sylan2 ( ( 𝜑𝑥 ∈ ( 𝐼 ∖ ( 𝐺 supp 𝑌 ) ) ) → ( ( 𝐺f · 𝐻 ) ‘ 𝑥 ) = ( ( 𝐺𝑥 ) · ( 𝐻𝑥 ) ) )
24 ssidd ( 𝜑 → ( 𝐺 supp 𝑌 ) ⊆ ( 𝐺 supp 𝑌 ) )
25 10 fvexi 𝑌 ∈ V
26 25 a1i ( 𝜑𝑌 ∈ V )
27 6 24 8 26 suppssr ( ( 𝜑𝑥 ∈ ( 𝐼 ∖ ( 𝐺 supp 𝑌 ) ) ) → ( 𝐺𝑥 ) = 𝑌 )
28 27 oveq1d ( ( 𝜑𝑥 ∈ ( 𝐼 ∖ ( 𝐺 supp 𝑌 ) ) ) → ( ( 𝐺𝑥 ) · ( 𝐻𝑥 ) ) = ( 𝑌 · ( 𝐻𝑥 ) ) )
29 7 ffvelrnda ( ( 𝜑𝑥𝐼 ) → ( 𝐻𝑥 ) ∈ 𝐵 )
30 4 1 3 10 9 lmod0vs ( ( 𝑊 ∈ LMod ∧ ( 𝐻𝑥 ) ∈ 𝐵 ) → ( 𝑌 · ( 𝐻𝑥 ) ) = 0 )
31 5 29 30 syl2an2r ( ( 𝜑𝑥𝐼 ) → ( 𝑌 · ( 𝐻𝑥 ) ) = 0 )
32 14 31 sylan2 ( ( 𝜑𝑥 ∈ ( 𝐼 ∖ ( 𝐺 supp 𝑌 ) ) ) → ( 𝑌 · ( 𝐻𝑥 ) ) = 0 )
33 23 28 32 3eqtrd ( ( 𝜑𝑥 ∈ ( 𝐼 ∖ ( 𝐺 supp 𝑌 ) ) ) → ( ( 𝐺f · 𝐻 ) ‘ 𝑥 ) = 0 )
34 13 33 suppss ( 𝜑 → ( ( 𝐺f · 𝐻 ) supp 0 ) ⊆ ( 𝐺 supp 𝑌 ) )
35 12 34 ssfid ( 𝜑 → ( ( 𝐺f · 𝐻 ) supp 0 ) ∈ Fin )
36 15 17 8 8 offun ( 𝜑 → Fun ( 𝐺f · 𝐻 ) )
37 ovexd ( 𝜑 → ( 𝐺f · 𝐻 ) ∈ V )
38 9 fvexi 0 ∈ V
39 38 a1i ( 𝜑0 ∈ V )
40 funisfsupp ( ( Fun ( 𝐺f · 𝐻 ) ∧ ( 𝐺f · 𝐻 ) ∈ V ∧ 0 ∈ V ) → ( ( 𝐺f · 𝐻 ) finSupp 0 ↔ ( ( 𝐺f · 𝐻 ) supp 0 ) ∈ Fin ) )
41 36 37 39 40 syl3anc ( 𝜑 → ( ( 𝐺f · 𝐻 ) finSupp 0 ↔ ( ( 𝐺f · 𝐻 ) supp 0 ) ∈ Fin ) )
42 35 41 mpbird ( 𝜑 → ( 𝐺f · 𝐻 ) finSupp 0 )