| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcvexch.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 2 |
|
lcvexch.p |
⊢ ⊕ = ( LSSum ‘ 𝑊 ) |
| 3 |
|
lcvexch.c |
⊢ 𝐶 = ( ⋖L ‘ 𝑊 ) |
| 4 |
|
lcvexch.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 5 |
|
lcvexch.t |
⊢ ( 𝜑 → 𝑇 ∈ 𝑆 ) |
| 6 |
|
lcvexch.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
| 7 |
|
lcvexch.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑆 ) |
| 8 |
|
lcvexch.a |
⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) ⊆ 𝑅 ) |
| 9 |
|
lcvexch.b |
⊢ ( 𝜑 → 𝑅 ⊆ 𝑈 ) |
| 10 |
1
|
lsssssubg |
⊢ ( 𝑊 ∈ LMod → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 11 |
4 10
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 12 |
11 7
|
sseldd |
⊢ ( 𝜑 → 𝑅 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 13 |
11 5
|
sseldd |
⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 14 |
11 6
|
sseldd |
⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 15 |
2
|
lsmmod |
⊢ ( ( ( 𝑅 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) ∧ 𝑅 ⊆ 𝑈 ) → ( 𝑅 ⊕ ( 𝑇 ∩ 𝑈 ) ) = ( ( 𝑅 ⊕ 𝑇 ) ∩ 𝑈 ) ) |
| 16 |
12 13 14 9 15
|
syl31anc |
⊢ ( 𝜑 → ( 𝑅 ⊕ ( 𝑇 ∩ 𝑈 ) ) = ( ( 𝑅 ⊕ 𝑇 ) ∩ 𝑈 ) ) |
| 17 |
1
|
lssincl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → ( 𝑇 ∩ 𝑈 ) ∈ 𝑆 ) |
| 18 |
4 5 6 17
|
syl3anc |
⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) ∈ 𝑆 ) |
| 19 |
11 18
|
sseldd |
⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 20 |
2
|
lsmss2 |
⊢ ( ( 𝑅 ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑇 ∩ 𝑈 ) ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑇 ∩ 𝑈 ) ⊆ 𝑅 ) → ( 𝑅 ⊕ ( 𝑇 ∩ 𝑈 ) ) = 𝑅 ) |
| 21 |
12 19 8 20
|
syl3anc |
⊢ ( 𝜑 → ( 𝑅 ⊕ ( 𝑇 ∩ 𝑈 ) ) = 𝑅 ) |
| 22 |
16 21
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝑅 ⊕ 𝑇 ) ∩ 𝑈 ) = 𝑅 ) |