Description: A lattice dilation is a one-to-one onto function. (Contributed by NM, 19-Apr-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ldil1o.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| ldil1o.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | ||
| ldil1o.d | ⊢ 𝐷 = ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) | ||
| Assertion | ldil1o | ⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝐷 ) → 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ldil1o.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | ldil1o.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
| 3 | ldil1o.d | ⊢ 𝐷 = ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) | |
| 4 | simpll | ⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝐷 ) → 𝐾 ∈ 𝑉 ) | |
| 5 | eqid | ⊢ ( LAut ‘ 𝐾 ) = ( LAut ‘ 𝐾 ) | |
| 6 | 2 5 3 | ldillaut | ⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝐷 ) → 𝐹 ∈ ( LAut ‘ 𝐾 ) ) | 
| 7 | 1 5 | laut1o | ⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝐹 ∈ ( LAut ‘ 𝐾 ) ) → 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) | 
| 8 | 4 6 7 | syl2anc | ⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝐷 ) → 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) |