Step |
Hyp |
Ref |
Expression |
1 |
|
ldilcnv.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
ldilcnv.d |
⊢ 𝐷 = ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
simpll |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝐷 ) → 𝐾 ∈ HL ) |
4 |
|
eqid |
⊢ ( LAut ‘ 𝐾 ) = ( LAut ‘ 𝐾 ) |
5 |
1 4 2
|
ldillaut |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝐷 ) → 𝐹 ∈ ( LAut ‘ 𝐾 ) ) |
6 |
4
|
lautcnv |
⊢ ( ( 𝐾 ∈ HL ∧ 𝐹 ∈ ( LAut ‘ 𝐾 ) ) → ◡ 𝐹 ∈ ( LAut ‘ 𝐾 ) ) |
7 |
3 5 6
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝐷 ) → ◡ 𝐹 ∈ ( LAut ‘ 𝐾 ) ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
9 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
10 |
8 9 1 2
|
ldilval |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝐷 ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑥 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝐹 ‘ 𝑥 ) = 𝑥 ) |
11 |
10
|
3expa |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝐷 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑥 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝐹 ‘ 𝑥 ) = 𝑥 ) |
12 |
11
|
3impb |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝐷 ) ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑥 ( le ‘ 𝐾 ) 𝑊 ) → ( 𝐹 ‘ 𝑥 ) = 𝑥 ) |
13 |
12
|
fveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝐷 ) ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑥 ( le ‘ 𝐾 ) 𝑊 ) → ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ◡ 𝐹 ‘ 𝑥 ) ) |
14 |
8 1 2
|
ldil1o |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝐷 ) → 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) |
15 |
14
|
3ad2ant1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝐷 ) ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑥 ( le ‘ 𝐾 ) 𝑊 ) → 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) |
16 |
|
simp2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝐷 ) ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑥 ( le ‘ 𝐾 ) 𝑊 ) → 𝑥 ∈ ( Base ‘ 𝐾 ) ) |
17 |
|
f1ocnvfv1 |
⊢ ( ( 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑥 ) ) = 𝑥 ) |
18 |
15 16 17
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝐷 ) ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑥 ( le ‘ 𝐾 ) 𝑊 ) → ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑥 ) ) = 𝑥 ) |
19 |
13 18
|
eqtr3d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝐷 ) ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑥 ( le ‘ 𝐾 ) 𝑊 ) → ( ◡ 𝐹 ‘ 𝑥 ) = 𝑥 ) |
20 |
19
|
3exp |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝐷 ) → ( 𝑥 ∈ ( Base ‘ 𝐾 ) → ( 𝑥 ( le ‘ 𝐾 ) 𝑊 → ( ◡ 𝐹 ‘ 𝑥 ) = 𝑥 ) ) ) |
21 |
20
|
ralrimiv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝐷 ) → ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( le ‘ 𝐾 ) 𝑊 → ( ◡ 𝐹 ‘ 𝑥 ) = 𝑥 ) ) |
22 |
8 9 1 4 2
|
isldil |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ◡ 𝐹 ∈ 𝐷 ↔ ( ◡ 𝐹 ∈ ( LAut ‘ 𝐾 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( le ‘ 𝐾 ) 𝑊 → ( ◡ 𝐹 ‘ 𝑥 ) = 𝑥 ) ) ) ) |
23 |
22
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝐷 ) → ( ◡ 𝐹 ∈ 𝐷 ↔ ( ◡ 𝐹 ∈ ( LAut ‘ 𝐾 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( le ‘ 𝐾 ) 𝑊 → ( ◡ 𝐹 ‘ 𝑥 ) = 𝑥 ) ) ) ) |
24 |
7 21 23
|
mpbir2and |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝐷 ) → ◡ 𝐹 ∈ 𝐷 ) |