Description: A lattice dilation is an automorphism. (Contributed by NM, 20-May-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ldillaut.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
| ldillaut.i | ⊢ 𝐼 = ( LAut ‘ 𝐾 ) | ||
| ldillaut.d | ⊢ 𝐷 = ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) | ||
| Assertion | ldillaut | ⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝐷 ) → 𝐹 ∈ 𝐼 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ldillaut.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
| 2 | ldillaut.i | ⊢ 𝐼 = ( LAut ‘ 𝐾 ) | |
| 3 | ldillaut.d | ⊢ 𝐷 = ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 5 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 6 | 4 5 1 2 3 | isldil | ⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → ( 𝐹 ∈ 𝐷 ↔ ( 𝐹 ∈ 𝐼 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( le ‘ 𝐾 ) 𝑊 → ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ) ) ) | 
| 7 | 6 | simprbda | ⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝐷 ) → 𝐹 ∈ 𝐼 ) |