Step |
Hyp |
Ref |
Expression |
1 |
|
ldilset.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
ldilset.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
ldilset.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
ldilset.i |
⊢ 𝐼 = ( LAut ‘ 𝐾 ) |
5 |
|
ldilset.d |
⊢ 𝐷 = ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
1 2 3 4
|
ldilfset |
⊢ ( 𝐾 ∈ 𝐶 → ( LDil ‘ 𝐾 ) = ( 𝑤 ∈ 𝐻 ↦ { 𝑓 ∈ 𝐼 ∣ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≤ 𝑤 → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) } ) ) |
7 |
6
|
fveq1d |
⊢ ( 𝐾 ∈ 𝐶 → ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) = ( ( 𝑤 ∈ 𝐻 ↦ { 𝑓 ∈ 𝐼 ∣ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≤ 𝑤 → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) } ) ‘ 𝑊 ) ) |
8 |
|
breq2 |
⊢ ( 𝑤 = 𝑊 → ( 𝑥 ≤ 𝑤 ↔ 𝑥 ≤ 𝑊 ) ) |
9 |
8
|
imbi1d |
⊢ ( 𝑤 = 𝑊 → ( ( 𝑥 ≤ 𝑤 → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) ↔ ( 𝑥 ≤ 𝑊 → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) ) ) |
10 |
9
|
ralbidv |
⊢ ( 𝑤 = 𝑊 → ( ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≤ 𝑤 → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≤ 𝑊 → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) ) ) |
11 |
10
|
rabbidv |
⊢ ( 𝑤 = 𝑊 → { 𝑓 ∈ 𝐼 ∣ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≤ 𝑤 → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) } = { 𝑓 ∈ 𝐼 ∣ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≤ 𝑊 → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) } ) |
12 |
|
eqid |
⊢ ( 𝑤 ∈ 𝐻 ↦ { 𝑓 ∈ 𝐼 ∣ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≤ 𝑤 → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) } ) = ( 𝑤 ∈ 𝐻 ↦ { 𝑓 ∈ 𝐼 ∣ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≤ 𝑤 → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) } ) |
13 |
4
|
fvexi |
⊢ 𝐼 ∈ V |
14 |
13
|
rabex |
⊢ { 𝑓 ∈ 𝐼 ∣ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≤ 𝑊 → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) } ∈ V |
15 |
11 12 14
|
fvmpt |
⊢ ( 𝑊 ∈ 𝐻 → ( ( 𝑤 ∈ 𝐻 ↦ { 𝑓 ∈ 𝐼 ∣ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≤ 𝑤 → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) } ) ‘ 𝑊 ) = { 𝑓 ∈ 𝐼 ∣ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≤ 𝑊 → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) } ) |
16 |
7 15
|
sylan9eq |
⊢ ( ( 𝐾 ∈ 𝐶 ∧ 𝑊 ∈ 𝐻 ) → ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) = { 𝑓 ∈ 𝐼 ∣ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≤ 𝑊 → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) } ) |
17 |
5 16
|
eqtrid |
⊢ ( ( 𝐾 ∈ 𝐶 ∧ 𝑊 ∈ 𝐻 ) → 𝐷 = { 𝑓 ∈ 𝐼 ∣ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≤ 𝑊 → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) } ) |