Step |
Hyp |
Ref |
Expression |
1 |
|
ldiv.a |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
2 |
|
ldiv.b |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
3 |
|
ldiv.c |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
4 |
|
ldiv.bn0 |
⊢ ( 𝜑 → 𝐵 ≠ 0 ) |
5 |
|
oveq1 |
⊢ ( ( 𝐴 · 𝐵 ) = 𝐶 → ( ( 𝐴 · 𝐵 ) / 𝐵 ) = ( 𝐶 / 𝐵 ) ) |
6 |
1 2 4
|
divcan4d |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) / 𝐵 ) = 𝐴 ) |
7 |
6
|
eqeq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 · 𝐵 ) / 𝐵 ) = ( 𝐶 / 𝐵 ) ↔ 𝐴 = ( 𝐶 / 𝐵 ) ) ) |
8 |
5 7
|
syl5ib |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) = 𝐶 → 𝐴 = ( 𝐶 / 𝐵 ) ) ) |
9 |
|
oveq1 |
⊢ ( 𝐴 = ( 𝐶 / 𝐵 ) → ( 𝐴 · 𝐵 ) = ( ( 𝐶 / 𝐵 ) · 𝐵 ) ) |
10 |
3 2 4
|
divcan1d |
⊢ ( 𝜑 → ( ( 𝐶 / 𝐵 ) · 𝐵 ) = 𝐶 ) |
11 |
10
|
eqeq2d |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) = ( ( 𝐶 / 𝐵 ) · 𝐵 ) ↔ ( 𝐴 · 𝐵 ) = 𝐶 ) ) |
12 |
9 11
|
syl5ib |
⊢ ( 𝜑 → ( 𝐴 = ( 𝐶 / 𝐵 ) → ( 𝐴 · 𝐵 ) = 𝐶 ) ) |
13 |
8 12
|
impbid |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) = 𝐶 ↔ 𝐴 = ( 𝐶 / 𝐵 ) ) ) |