| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ldiv.a | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | ldiv.b | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 3 |  | ldiv.c | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
						
							| 4 |  | ldiv.bn0 | ⊢ ( 𝜑  →  𝐵  ≠  0 ) | 
						
							| 5 |  | oveq1 | ⊢ ( ( 𝐴  ·  𝐵 )  =  𝐶  →  ( ( 𝐴  ·  𝐵 )  /  𝐵 )  =  ( 𝐶  /  𝐵 ) ) | 
						
							| 6 | 1 2 4 | divcan4d | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝐵 )  /  𝐵 )  =  𝐴 ) | 
						
							| 7 | 6 | eqeq1d | ⊢ ( 𝜑  →  ( ( ( 𝐴  ·  𝐵 )  /  𝐵 )  =  ( 𝐶  /  𝐵 )  ↔  𝐴  =  ( 𝐶  /  𝐵 ) ) ) | 
						
							| 8 | 5 7 | imbitrid | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝐵 )  =  𝐶  →  𝐴  =  ( 𝐶  /  𝐵 ) ) ) | 
						
							| 9 |  | oveq1 | ⊢ ( 𝐴  =  ( 𝐶  /  𝐵 )  →  ( 𝐴  ·  𝐵 )  =  ( ( 𝐶  /  𝐵 )  ·  𝐵 ) ) | 
						
							| 10 | 3 2 4 | divcan1d | ⊢ ( 𝜑  →  ( ( 𝐶  /  𝐵 )  ·  𝐵 )  =  𝐶 ) | 
						
							| 11 | 10 | eqeq2d | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝐵 )  =  ( ( 𝐶  /  𝐵 )  ·  𝐵 )  ↔  ( 𝐴  ·  𝐵 )  =  𝐶 ) ) | 
						
							| 12 | 9 11 | imbitrid | ⊢ ( 𝜑  →  ( 𝐴  =  ( 𝐶  /  𝐵 )  →  ( 𝐴  ·  𝐵 )  =  𝐶 ) ) | 
						
							| 13 | 8 12 | impbid | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝐵 )  =  𝐶  ↔  𝐴  =  ( 𝐶  /  𝐵 ) ) ) |