Metamath Proof Explorer
Description: Adding both side of two inequalities. (Contributed by Mario Carneiro, 27-May-2016) (Proof shortened by Glauco Siliprandi, 5-Apr-2020)
|
|
Ref |
Expression |
|
Hypotheses |
leidd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
ltnegd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
|
|
ltadd1d.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
|
|
lt2addd.4 |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
|
|
le2addd.5 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐶 ) |
|
|
le2addd.6 |
⊢ ( 𝜑 → 𝐵 ≤ 𝐷 ) |
|
Assertion |
le2addd |
⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) ≤ ( 𝐶 + 𝐷 ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
leidd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
ltnegd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
ltadd1d.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 4 |
|
lt2addd.4 |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
| 5 |
|
le2addd.5 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐶 ) |
| 6 |
|
le2addd.6 |
⊢ ( 𝜑 → 𝐵 ≤ 𝐷 ) |
| 7 |
1 2
|
readdcld |
⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) ∈ ℝ ) |
| 8 |
3 2
|
readdcld |
⊢ ( 𝜑 → ( 𝐶 + 𝐵 ) ∈ ℝ ) |
| 9 |
3 4
|
readdcld |
⊢ ( 𝜑 → ( 𝐶 + 𝐷 ) ∈ ℝ ) |
| 10 |
1 3 2 5
|
leadd1dd |
⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) ≤ ( 𝐶 + 𝐵 ) ) |
| 11 |
2 4 3 6
|
leadd2dd |
⊢ ( 𝜑 → ( 𝐶 + 𝐵 ) ≤ ( 𝐶 + 𝐷 ) ) |
| 12 |
7 8 9 10 11
|
letrd |
⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) ≤ ( 𝐶 + 𝐷 ) ) |