Description: Adding both side of two inequalities. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | leidd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| ltnegd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| ltadd1d.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
| lt2addd.4 | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | ||
| le2addd.5 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐶 ) | ||
| le2addd.6 | ⊢ ( 𝜑 → 𝐵 ≤ 𝐷 ) | ||
| Assertion | le2addd | ⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) ≤ ( 𝐶 + 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leidd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | ltnegd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | ltadd1d.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
| 4 | lt2addd.4 | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | |
| 5 | le2addd.5 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐶 ) | |
| 6 | le2addd.6 | ⊢ ( 𝜑 → 𝐵 ≤ 𝐷 ) | |
| 7 | le2add | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐷 ) → ( 𝐴 + 𝐵 ) ≤ ( 𝐶 + 𝐷 ) ) ) | |
| 8 | 1 2 3 4 7 | syl22anc | ⊢ ( 𝜑 → ( ( 𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐷 ) → ( 𝐴 + 𝐵 ) ≤ ( 𝐶 + 𝐷 ) ) ) |
| 9 | 5 6 8 | mp2and | ⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) ≤ ( 𝐶 + 𝐷 ) ) |