Metamath Proof Explorer


Theorem le2msq

Description: The square function on nonnegative reals is monotonic. (Contributed by NM, 3-Aug-1999) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion le2msq ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐴𝐵 ↔ ( 𝐴 · 𝐴 ) ≤ ( 𝐵 · 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 lt2msq ( ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) → ( 𝐵 < 𝐴 ↔ ( 𝐵 · 𝐵 ) < ( 𝐴 · 𝐴 ) ) )
2 1 ancoms ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐵 < 𝐴 ↔ ( 𝐵 · 𝐵 ) < ( 𝐴 · 𝐴 ) ) )
3 2 notbid ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ¬ 𝐵 < 𝐴 ↔ ¬ ( 𝐵 · 𝐵 ) < ( 𝐴 · 𝐴 ) ) )
4 simpll ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → 𝐴 ∈ ℝ )
5 simprl ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → 𝐵 ∈ ℝ )
6 4 5 lenltd ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐴𝐵 ↔ ¬ 𝐵 < 𝐴 ) )
7 4 4 remulcld ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐴 · 𝐴 ) ∈ ℝ )
8 5 5 remulcld ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐵 · 𝐵 ) ∈ ℝ )
9 7 8 lenltd ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( 𝐴 · 𝐴 ) ≤ ( 𝐵 · 𝐵 ) ↔ ¬ ( 𝐵 · 𝐵 ) < ( 𝐴 · 𝐴 ) ) )
10 3 6 9 3bitr4d ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐴𝐵 ↔ ( 𝐴 · 𝐴 ) ≤ ( 𝐵 · 𝐵 ) ) )