Step |
Hyp |
Ref |
Expression |
1 |
|
le2msq |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 · 𝐴 ) ≤ ( 𝐵 · 𝐵 ) ) ) |
2 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
3 |
|
recn |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) |
4 |
|
sqval |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 ) ) |
5 |
|
sqval |
⊢ ( 𝐵 ∈ ℂ → ( 𝐵 ↑ 2 ) = ( 𝐵 · 𝐵 ) ) |
6 |
4 5
|
breqan12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) ≤ ( 𝐵 ↑ 2 ) ↔ ( 𝐴 · 𝐴 ) ≤ ( 𝐵 · 𝐵 ) ) ) |
7 |
2 3 6
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ↑ 2 ) ≤ ( 𝐵 ↑ 2 ) ↔ ( 𝐴 · 𝐴 ) ≤ ( 𝐵 · 𝐵 ) ) ) |
8 |
7
|
ad2ant2r |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( 𝐴 ↑ 2 ) ≤ ( 𝐵 ↑ 2 ) ↔ ( 𝐴 · 𝐴 ) ≤ ( 𝐵 · 𝐵 ) ) ) |
9 |
1 8
|
bitr4d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 ↑ 2 ) ≤ ( 𝐵 ↑ 2 ) ) ) |