Step |
Hyp |
Ref |
Expression |
1 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ) → 𝐴 ≤ 𝐵 ) |
2 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ) → 𝐵 ∈ ℝ ) |
3 |
|
0re |
⊢ 0 ∈ ℝ |
4 |
|
letr |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) → 0 ≤ 𝐵 ) ) |
5 |
3 4
|
mp3an1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) → 0 ≤ 𝐵 ) ) |
6 |
5
|
exp4b |
⊢ ( 𝐴 ∈ ℝ → ( 𝐵 ∈ ℝ → ( 0 ≤ 𝐴 → ( 𝐴 ≤ 𝐵 → 0 ≤ 𝐵 ) ) ) ) |
7 |
6
|
com23 |
⊢ ( 𝐴 ∈ ℝ → ( 0 ≤ 𝐴 → ( 𝐵 ∈ ℝ → ( 𝐴 ≤ 𝐵 → 0 ≤ 𝐵 ) ) ) ) |
8 |
7
|
imp43 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ) → 0 ≤ 𝐵 ) |
9 |
2 8
|
jca |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ) → ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) |
10 |
|
le2sq |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 ↑ 2 ) ≤ ( 𝐵 ↑ 2 ) ) ) |
11 |
9 10
|
syldan |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 ↑ 2 ) ≤ ( 𝐵 ↑ 2 ) ) ) |
12 |
1 11
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ) → ( 𝐴 ↑ 2 ) ≤ ( 𝐵 ↑ 2 ) ) |