Metamath Proof Explorer
Description: The square function on nonnegative reals is monotonic. (Contributed by Mario Carneiro, 28-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
resqcld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
lt2sqd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
|
|
lt2sqd.3 |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
|
|
lt2sqd.4 |
⊢ ( 𝜑 → 0 ≤ 𝐵 ) |
|
Assertion |
le2sqd |
⊢ ( 𝜑 → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 ↑ 2 ) ≤ ( 𝐵 ↑ 2 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
resqcld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
lt2sqd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
lt2sqd.3 |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
4 |
|
lt2sqd.4 |
⊢ ( 𝜑 → 0 ≤ 𝐵 ) |
5 |
|
le2sq |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 ↑ 2 ) ≤ ( 𝐵 ↑ 2 ) ) ) |
6 |
1 3 2 4 5
|
syl22anc |
⊢ ( 𝜑 → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 ↑ 2 ) ≤ ( 𝐵 ↑ 2 ) ) ) |