Metamath Proof Explorer
		
		
		
		Description:  The square function on nonnegative reals is monotonic.  (Contributed by Mario Carneiro, 28-May-2016)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | sqgt0d.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
					
						|  |  | lt2sqd.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
					
						|  |  | lt2sqd.3 | ⊢ ( 𝜑  →  0  ≤  𝐴 ) | 
					
						|  |  | lt2sqd.4 | ⊢ ( 𝜑  →  0  ≤  𝐵 ) | 
				
					|  | Assertion | le2sqd | ⊢  ( 𝜑  →  ( 𝐴  ≤  𝐵  ↔  ( 𝐴 ↑ 2 )  ≤  ( 𝐵 ↑ 2 ) ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sqgt0d.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | lt2sqd.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | lt2sqd.3 | ⊢ ( 𝜑  →  0  ≤  𝐴 ) | 
						
							| 4 |  | lt2sqd.4 | ⊢ ( 𝜑  →  0  ≤  𝐵 ) | 
						
							| 5 |  | le2sq | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 ) )  →  ( 𝐴  ≤  𝐵  ↔  ( 𝐴 ↑ 2 )  ≤  ( 𝐵 ↑ 2 ) ) ) | 
						
							| 6 | 1 3 2 4 5 | syl22anc | ⊢ ( 𝜑  →  ( 𝐴  ≤  𝐵  ↔  ( 𝐴 ↑ 2 )  ≤  ( 𝐵 ↑ 2 ) ) ) |