Metamath Proof Explorer


Theorem le2tri3i

Description: Extended trichotomy law for 'less than or equal to'. (Contributed by NM, 14-Aug-2000)

Ref Expression
Hypotheses lt.1 𝐴 ∈ ℝ
lt.2 𝐵 ∈ ℝ
lt.3 𝐶 ∈ ℝ
Assertion le2tri3i ( ( 𝐴𝐵𝐵𝐶𝐶𝐴 ) ↔ ( 𝐴 = 𝐵𝐵 = 𝐶𝐶 = 𝐴 ) )

Proof

Step Hyp Ref Expression
1 lt.1 𝐴 ∈ ℝ
2 lt.2 𝐵 ∈ ℝ
3 lt.3 𝐶 ∈ ℝ
4 2 3 1 letri ( ( 𝐵𝐶𝐶𝐴 ) → 𝐵𝐴 )
5 1 2 letri3i ( 𝐴 = 𝐵 ↔ ( 𝐴𝐵𝐵𝐴 ) )
6 5 biimpri ( ( 𝐴𝐵𝐵𝐴 ) → 𝐴 = 𝐵 )
7 4 6 sylan2 ( ( 𝐴𝐵 ∧ ( 𝐵𝐶𝐶𝐴 ) ) → 𝐴 = 𝐵 )
8 7 3impb ( ( 𝐴𝐵𝐵𝐶𝐶𝐴 ) → 𝐴 = 𝐵 )
9 3 1 2 letri ( ( 𝐶𝐴𝐴𝐵 ) → 𝐶𝐵 )
10 2 3 letri3i ( 𝐵 = 𝐶 ↔ ( 𝐵𝐶𝐶𝐵 ) )
11 10 biimpri ( ( 𝐵𝐶𝐶𝐵 ) → 𝐵 = 𝐶 )
12 9 11 sylan2 ( ( 𝐵𝐶 ∧ ( 𝐶𝐴𝐴𝐵 ) ) → 𝐵 = 𝐶 )
13 12 3impb ( ( 𝐵𝐶𝐶𝐴𝐴𝐵 ) → 𝐵 = 𝐶 )
14 13 3comr ( ( 𝐴𝐵𝐵𝐶𝐶𝐴 ) → 𝐵 = 𝐶 )
15 1 2 3 letri ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 )
16 1 3 letri3i ( 𝐴 = 𝐶 ↔ ( 𝐴𝐶𝐶𝐴 ) )
17 16 biimpri ( ( 𝐴𝐶𝐶𝐴 ) → 𝐴 = 𝐶 )
18 17 eqcomd ( ( 𝐴𝐶𝐶𝐴 ) → 𝐶 = 𝐴 )
19 15 18 stoic3 ( ( 𝐴𝐵𝐵𝐶𝐶𝐴 ) → 𝐶 = 𝐴 )
20 8 14 19 3jca ( ( 𝐴𝐵𝐵𝐶𝐶𝐴 ) → ( 𝐴 = 𝐵𝐵 = 𝐶𝐶 = 𝐴 ) )
21 1 eqlei ( 𝐴 = 𝐵𝐴𝐵 )
22 2 eqlei ( 𝐵 = 𝐶𝐵𝐶 )
23 3 eqlei ( 𝐶 = 𝐴𝐶𝐴 )
24 21 22 23 3anim123i ( ( 𝐴 = 𝐵𝐵 = 𝐶𝐶 = 𝐴 ) → ( 𝐴𝐵𝐵𝐶𝐶𝐴 ) )
25 20 24 impbii ( ( 𝐴𝐵𝐵𝐶𝐶𝐴 ) ↔ ( 𝐴 = 𝐵𝐵 = 𝐶𝐶 = 𝐴 ) )