| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0red |
⊢ ( 𝐴 ∈ ℝ → 0 ∈ ℝ ) |
| 2 |
|
id |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ ) |
| 3 |
|
absid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( abs ‘ 𝐴 ) = 𝐴 ) |
| 4 |
|
eqcom |
⊢ ( ( abs ‘ 𝐴 ) = 𝐴 ↔ 𝐴 = ( abs ‘ 𝐴 ) ) |
| 5 |
|
eqle |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 = ( abs ‘ 𝐴 ) ) → 𝐴 ≤ ( abs ‘ 𝐴 ) ) |
| 6 |
4 5
|
sylan2b |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( abs ‘ 𝐴 ) = 𝐴 ) → 𝐴 ≤ ( abs ‘ 𝐴 ) ) |
| 7 |
3 6
|
syldan |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 𝐴 ≤ ( abs ‘ 𝐴 ) ) |
| 8 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
| 9 |
|
absge0 |
⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( abs ‘ 𝐴 ) ) |
| 10 |
8 9
|
syl |
⊢ ( 𝐴 ∈ ℝ → 0 ≤ ( abs ‘ 𝐴 ) ) |
| 11 |
|
abscl |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 12 |
8 11
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 13 |
|
0re |
⊢ 0 ∈ ℝ |
| 14 |
|
letr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ∈ ℝ ∧ ( abs ‘ 𝐴 ) ∈ ℝ ) → ( ( 𝐴 ≤ 0 ∧ 0 ≤ ( abs ‘ 𝐴 ) ) → 𝐴 ≤ ( abs ‘ 𝐴 ) ) ) |
| 15 |
13 14
|
mp3an2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( abs ‘ 𝐴 ) ∈ ℝ ) → ( ( 𝐴 ≤ 0 ∧ 0 ≤ ( abs ‘ 𝐴 ) ) → 𝐴 ≤ ( abs ‘ 𝐴 ) ) ) |
| 16 |
12 15
|
mpdan |
⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 ≤ 0 ∧ 0 ≤ ( abs ‘ 𝐴 ) ) → 𝐴 ≤ ( abs ‘ 𝐴 ) ) ) |
| 17 |
10 16
|
mpan2d |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ≤ 0 → 𝐴 ≤ ( abs ‘ 𝐴 ) ) ) |
| 18 |
17
|
imp |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → 𝐴 ≤ ( abs ‘ 𝐴 ) ) |
| 19 |
1 2 7 18
|
lecasei |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ≤ ( abs ‘ 𝐴 ) ) |