Step |
Hyp |
Ref |
Expression |
1 |
|
0red |
⊢ ( 𝐴 ∈ ℝ → 0 ∈ ℝ ) |
2 |
|
id |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ ) |
3 |
|
absid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( abs ‘ 𝐴 ) = 𝐴 ) |
4 |
|
eqcom |
⊢ ( ( abs ‘ 𝐴 ) = 𝐴 ↔ 𝐴 = ( abs ‘ 𝐴 ) ) |
5 |
|
eqle |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 = ( abs ‘ 𝐴 ) ) → 𝐴 ≤ ( abs ‘ 𝐴 ) ) |
6 |
4 5
|
sylan2b |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( abs ‘ 𝐴 ) = 𝐴 ) → 𝐴 ≤ ( abs ‘ 𝐴 ) ) |
7 |
3 6
|
syldan |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 𝐴 ≤ ( abs ‘ 𝐴 ) ) |
8 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
9 |
|
absge0 |
⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( abs ‘ 𝐴 ) ) |
10 |
8 9
|
syl |
⊢ ( 𝐴 ∈ ℝ → 0 ≤ ( abs ‘ 𝐴 ) ) |
11 |
|
abscl |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) |
12 |
8 11
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( abs ‘ 𝐴 ) ∈ ℝ ) |
13 |
|
0re |
⊢ 0 ∈ ℝ |
14 |
|
letr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ∈ ℝ ∧ ( abs ‘ 𝐴 ) ∈ ℝ ) → ( ( 𝐴 ≤ 0 ∧ 0 ≤ ( abs ‘ 𝐴 ) ) → 𝐴 ≤ ( abs ‘ 𝐴 ) ) ) |
15 |
13 14
|
mp3an2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( abs ‘ 𝐴 ) ∈ ℝ ) → ( ( 𝐴 ≤ 0 ∧ 0 ≤ ( abs ‘ 𝐴 ) ) → 𝐴 ≤ ( abs ‘ 𝐴 ) ) ) |
16 |
12 15
|
mpdan |
⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 ≤ 0 ∧ 0 ≤ ( abs ‘ 𝐴 ) ) → 𝐴 ≤ ( abs ‘ 𝐴 ) ) ) |
17 |
10 16
|
mpan2d |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ≤ 0 → 𝐴 ≤ ( abs ‘ 𝐴 ) ) ) |
18 |
17
|
imp |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → 𝐴 ≤ ( abs ‘ 𝐴 ) ) |
19 |
1 2 7 18
|
lecasei |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ≤ ( abs ‘ 𝐴 ) ) |