Metamath Proof Explorer
		
		
		
		Description:  Addition to both sides of 'less than or equal to'.  (Contributed by Glauco Siliprandi, 5-Apr-2020)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | leadd12dd.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
					
						|  |  | leadd12dd.b | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
					
						|  |  | leadd12dd.c | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
					
						|  |  | leadd12dd.d | ⊢ ( 𝜑  →  𝐷  ∈  ℝ ) | 
					
						|  |  | leadd12dd.ac | ⊢ ( 𝜑  →  𝐴  ≤  𝐶 ) | 
					
						|  |  | leadd12dd.bd | ⊢ ( 𝜑  →  𝐵  ≤  𝐷 ) | 
				
					|  | Assertion | leadd12dd | ⊢  ( 𝜑  →  ( 𝐴  +  𝐵 )  ≤  ( 𝐶  +  𝐷 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | leadd12dd.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | leadd12dd.b | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | leadd12dd.c | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 4 |  | leadd12dd.d | ⊢ ( 𝜑  →  𝐷  ∈  ℝ ) | 
						
							| 5 |  | leadd12dd.ac | ⊢ ( 𝜑  →  𝐴  ≤  𝐶 ) | 
						
							| 6 |  | leadd12dd.bd | ⊢ ( 𝜑  →  𝐵  ≤  𝐷 ) | 
						
							| 7 | 1 2 | readdcld | ⊢ ( 𝜑  →  ( 𝐴  +  𝐵 )  ∈  ℝ ) | 
						
							| 8 | 3 2 | readdcld | ⊢ ( 𝜑  →  ( 𝐶  +  𝐵 )  ∈  ℝ ) | 
						
							| 9 | 3 4 | readdcld | ⊢ ( 𝜑  →  ( 𝐶  +  𝐷 )  ∈  ℝ ) | 
						
							| 10 | 1 3 2 5 | leadd1dd | ⊢ ( 𝜑  →  ( 𝐴  +  𝐵 )  ≤  ( 𝐶  +  𝐵 ) ) | 
						
							| 11 | 2 4 3 6 | leadd2dd | ⊢ ( 𝜑  →  ( 𝐶  +  𝐵 )  ≤  ( 𝐶  +  𝐷 ) ) | 
						
							| 12 | 7 8 9 10 11 | letrd | ⊢ ( 𝜑  →  ( 𝐴  +  𝐵 )  ≤  ( 𝐶  +  𝐷 ) ) |