Metamath Proof Explorer


Theorem leadd2i

Description: Addition to both sides of 'less than or equal to'. (Contributed by NM, 11-Aug-1999)

Ref Expression
Hypotheses lt2.1 𝐴 ∈ ℝ
lt2.2 𝐵 ∈ ℝ
lt2.3 𝐶 ∈ ℝ
Assertion leadd2i ( 𝐴𝐵 ↔ ( 𝐶 + 𝐴 ) ≤ ( 𝐶 + 𝐵 ) )

Proof

Step Hyp Ref Expression
1 lt2.1 𝐴 ∈ ℝ
2 lt2.2 𝐵 ∈ ℝ
3 lt2.3 𝐶 ∈ ℝ
4 leadd2 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴𝐵 ↔ ( 𝐶 + 𝐴 ) ≤ ( 𝐶 + 𝐵 ) ) )
5 1 2 3 4 mp3an ( 𝐴𝐵 ↔ ( 𝐶 + 𝐴 ) ≤ ( 𝐶 + 𝐵 ) )