Metamath Proof Explorer


Theorem leaddle0

Description: The sum of a real number and a second real number is less than the real number iff the second real number is negative. (Contributed by Alexander van der Vekens, 30-May-2018)

Ref Expression
Assertion leaddle0 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 + 𝐵 ) ≤ 𝐴𝐵 ≤ 0 ) )

Proof

Step Hyp Ref Expression
1 leaddsub2 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 𝐴 + 𝐵 ) ≤ 𝐴𝐵 ≤ ( 𝐴𝐴 ) ) )
2 1 3anidm13 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 + 𝐵 ) ≤ 𝐴𝐵 ≤ ( 𝐴𝐴 ) ) )
3 recn ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ )
4 3 subidd ( 𝐴 ∈ ℝ → ( 𝐴𝐴 ) = 0 )
5 4 adantr ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴𝐴 ) = 0 )
6 5 breq2d ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 ≤ ( 𝐴𝐴 ) ↔ 𝐵 ≤ 0 ) )
7 2 6 bitrd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 + 𝐵 ) ≤ 𝐴𝐵 ≤ 0 ) )