Metamath Proof Explorer


Theorem leatb

Description: A poset element less than or equal to an atom equals either zero or the atom. ( atss analog.) (Contributed by NM, 17-Nov-2011)

Ref Expression
Hypotheses leatom.b 𝐵 = ( Base ‘ 𝐾 )
leatom.l = ( le ‘ 𝐾 )
leatom.z 0 = ( 0. ‘ 𝐾 )
leatom.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion leatb ( ( 𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴 ) → ( 𝑋 𝑃 ↔ ( 𝑋 = 𝑃𝑋 = 0 ) ) )

Proof

Step Hyp Ref Expression
1 leatom.b 𝐵 = ( Base ‘ 𝐾 )
2 leatom.l = ( le ‘ 𝐾 )
3 leatom.z 0 = ( 0. ‘ 𝐾 )
4 leatom.a 𝐴 = ( Atoms ‘ 𝐾 )
5 1 2 3 op0le ( ( 𝐾 ∈ OP ∧ 𝑋𝐵 ) → 0 𝑋 )
6 5 3adant3 ( ( 𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴 ) → 0 𝑋 )
7 6 biantrurd ( ( 𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴 ) → ( 𝑋 𝑃 ↔ ( 0 𝑋𝑋 𝑃 ) ) )
8 opposet ( 𝐾 ∈ OP → 𝐾 ∈ Poset )
9 8 3ad2ant1 ( ( 𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴 ) → 𝐾 ∈ Poset )
10 1 3 op0cl ( 𝐾 ∈ OP → 0𝐵 )
11 1 4 atbase ( 𝑃𝐴𝑃𝐵 )
12 id ( 𝑋𝐵𝑋𝐵 )
13 10 11 12 3anim123i ( ( 𝐾 ∈ OP ∧ 𝑃𝐴𝑋𝐵 ) → ( 0𝐵𝑃𝐵𝑋𝐵 ) )
14 13 3com23 ( ( 𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴 ) → ( 0𝐵𝑃𝐵𝑋𝐵 ) )
15 eqid ( ⋖ ‘ 𝐾 ) = ( ⋖ ‘ 𝐾 )
16 3 15 4 atcvr0 ( ( 𝐾 ∈ OP ∧ 𝑃𝐴 ) → 0 ( ⋖ ‘ 𝐾 ) 𝑃 )
17 16 3adant2 ( ( 𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴 ) → 0 ( ⋖ ‘ 𝐾 ) 𝑃 )
18 1 2 15 cvrnbtwn4 ( ( 𝐾 ∈ Poset ∧ ( 0𝐵𝑃𝐵𝑋𝐵 ) ∧ 0 ( ⋖ ‘ 𝐾 ) 𝑃 ) → ( ( 0 𝑋𝑋 𝑃 ) ↔ ( 0 = 𝑋𝑋 = 𝑃 ) ) )
19 9 14 17 18 syl3anc ( ( 𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴 ) → ( ( 0 𝑋𝑋 𝑃 ) ↔ ( 0 = 𝑋𝑋 = 𝑃 ) ) )
20 eqcom ( 0 = 𝑋𝑋 = 0 )
21 20 orbi1i ( ( 0 = 𝑋𝑋 = 𝑃 ) ↔ ( 𝑋 = 0𝑋 = 𝑃 ) )
22 19 21 bitrdi ( ( 𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴 ) → ( ( 0 𝑋𝑋 𝑃 ) ↔ ( 𝑋 = 0𝑋 = 𝑃 ) ) )
23 7 22 bitrd ( ( 𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴 ) → ( 𝑋 𝑃 ↔ ( 𝑋 = 0𝑋 = 𝑃 ) ) )
24 orcom ( ( 𝑋 = 0𝑋 = 𝑃 ) ↔ ( 𝑋 = 𝑃𝑋 = 0 ) )
25 23 24 bitrdi ( ( 𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴 ) → ( 𝑋 𝑃 ↔ ( 𝑋 = 𝑃𝑋 = 0 ) ) )