| Step | Hyp | Ref | Expression | 
						
							| 1 |  | leatom.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | leatom.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 3 |  | leatom.z | ⊢  0   =  ( 0. ‘ 𝐾 ) | 
						
							| 4 |  | leatom.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 5 | 1 2 3 | op0le | ⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵 )  →   0   ≤  𝑋 ) | 
						
							| 6 | 5 | 3adant3 | ⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴 )  →   0   ≤  𝑋 ) | 
						
							| 7 | 6 | biantrurd | ⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴 )  →  ( 𝑋  ≤  𝑃  ↔  (  0   ≤  𝑋  ∧  𝑋  ≤  𝑃 ) ) ) | 
						
							| 8 |  | opposet | ⊢ ( 𝐾  ∈  OP  →  𝐾  ∈  Poset ) | 
						
							| 9 | 8 | 3ad2ant1 | ⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴 )  →  𝐾  ∈  Poset ) | 
						
							| 10 | 1 3 | op0cl | ⊢ ( 𝐾  ∈  OP  →   0   ∈  𝐵 ) | 
						
							| 11 | 1 4 | atbase | ⊢ ( 𝑃  ∈  𝐴  →  𝑃  ∈  𝐵 ) | 
						
							| 12 |  | id | ⊢ ( 𝑋  ∈  𝐵  →  𝑋  ∈  𝐵 ) | 
						
							| 13 | 10 11 12 | 3anim123i | ⊢ ( ( 𝐾  ∈  OP  ∧  𝑃  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  →  (  0   ∈  𝐵  ∧  𝑃  ∈  𝐵  ∧  𝑋  ∈  𝐵 ) ) | 
						
							| 14 | 13 | 3com23 | ⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴 )  →  (  0   ∈  𝐵  ∧  𝑃  ∈  𝐵  ∧  𝑋  ∈  𝐵 ) ) | 
						
							| 15 |  | eqid | ⊢ (  ⋖  ‘ 𝐾 )  =  (  ⋖  ‘ 𝐾 ) | 
						
							| 16 | 3 15 4 | atcvr0 | ⊢ ( ( 𝐾  ∈  OP  ∧  𝑃  ∈  𝐴 )  →   0  (  ⋖  ‘ 𝐾 ) 𝑃 ) | 
						
							| 17 | 16 | 3adant2 | ⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴 )  →   0  (  ⋖  ‘ 𝐾 ) 𝑃 ) | 
						
							| 18 | 1 2 15 | cvrnbtwn4 | ⊢ ( ( 𝐾  ∈  Poset  ∧  (  0   ∈  𝐵  ∧  𝑃  ∈  𝐵  ∧  𝑋  ∈  𝐵 )  ∧   0  (  ⋖  ‘ 𝐾 ) 𝑃 )  →  ( (  0   ≤  𝑋  ∧  𝑋  ≤  𝑃 )  ↔  (  0   =  𝑋  ∨  𝑋  =  𝑃 ) ) ) | 
						
							| 19 | 9 14 17 18 | syl3anc | ⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴 )  →  ( (  0   ≤  𝑋  ∧  𝑋  ≤  𝑃 )  ↔  (  0   =  𝑋  ∨  𝑋  =  𝑃 ) ) ) | 
						
							| 20 |  | eqcom | ⊢ (  0   =  𝑋  ↔  𝑋  =   0  ) | 
						
							| 21 | 20 | orbi1i | ⊢ ( (  0   =  𝑋  ∨  𝑋  =  𝑃 )  ↔  ( 𝑋  =   0   ∨  𝑋  =  𝑃 ) ) | 
						
							| 22 | 19 21 | bitrdi | ⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴 )  →  ( (  0   ≤  𝑋  ∧  𝑋  ≤  𝑃 )  ↔  ( 𝑋  =   0   ∨  𝑋  =  𝑃 ) ) ) | 
						
							| 23 | 7 22 | bitrd | ⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴 )  →  ( 𝑋  ≤  𝑃  ↔  ( 𝑋  =   0   ∨  𝑋  =  𝑃 ) ) ) | 
						
							| 24 |  | orcom | ⊢ ( ( 𝑋  =   0   ∨  𝑋  =  𝑃 )  ↔  ( 𝑋  =  𝑃  ∨  𝑋  =   0  ) ) | 
						
							| 25 | 23 24 | bitrdi | ⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴 )  →  ( 𝑋  ≤  𝑃  ↔  ( 𝑋  =  𝑃  ∨  𝑋  =   0  ) ) ) |