| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lebnum.j | ⊢ 𝐽  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 2 |  | lebnum.d | ⊢ ( 𝜑  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 3 |  | lebnum.c | ⊢ ( 𝜑  →  𝐽  ∈  Comp ) | 
						
							| 4 |  | lebnum.s | ⊢ ( 𝜑  →  𝑈  ⊆  𝐽 ) | 
						
							| 5 |  | lebnum.u | ⊢ ( 𝜑  →  𝑋  =  ∪  𝑈 ) | 
						
							| 6 |  | metxmet | ⊢ ( 𝐷  ∈  ( Met ‘ 𝑋 )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 7 | 2 6 | syl | ⊢ ( 𝜑  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 8 | 1 | mopnuni | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝜑  →  𝑋  =  ∪  𝐽 ) | 
						
							| 10 | 9 5 | eqtr3d | ⊢ ( 𝜑  →  ∪  𝐽  =  ∪  𝑈 ) | 
						
							| 11 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 12 | 11 | cmpcov | ⊢ ( ( 𝐽  ∈  Comp  ∧  𝑈  ⊆  𝐽  ∧  ∪  𝐽  =  ∪  𝑈 )  →  ∃ 𝑤  ∈  ( 𝒫  𝑈  ∩  Fin ) ∪  𝐽  =  ∪  𝑤 ) | 
						
							| 13 | 3 4 10 12 | syl3anc | ⊢ ( 𝜑  →  ∃ 𝑤  ∈  ( 𝒫  𝑈  ∩  Fin ) ∪  𝐽  =  ∪  𝑤 ) | 
						
							| 14 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 15 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑤  ∈  ( 𝒫  𝑈  ∩  Fin )  ∧  ∪  𝐽  =  ∪  𝑤 ) )  →  𝑤  ∈  ( 𝒫  𝑈  ∩  Fin ) ) | 
						
							| 16 | 15 | elin1d | ⊢ ( ( 𝜑  ∧  ( 𝑤  ∈  ( 𝒫  𝑈  ∩  Fin )  ∧  ∪  𝐽  =  ∪  𝑤 ) )  →  𝑤  ∈  𝒫  𝑈 ) | 
						
							| 17 | 16 | elpwid | ⊢ ( ( 𝜑  ∧  ( 𝑤  ∈  ( 𝒫  𝑈  ∩  Fin )  ∧  ∪  𝐽  =  ∪  𝑤 ) )  →  𝑤  ⊆  𝑈 ) | 
						
							| 18 | 17 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑤  ∈  ( 𝒫  𝑈  ∩  Fin )  ∧  ∪  𝐽  =  ∪  𝑤 ) )  ∧  𝑋  ∈  𝑤 )  ∧  𝑥  ∈  𝑋 )  →  𝑤  ⊆  𝑈 ) | 
						
							| 19 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑤  ∈  ( 𝒫  𝑈  ∩  Fin )  ∧  ∪  𝐽  =  ∪  𝑤 ) )  ∧  𝑋  ∈  𝑤 )  ∧  𝑥  ∈  𝑋 )  →  𝑋  ∈  𝑤 ) | 
						
							| 20 | 18 19 | sseldd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑤  ∈  ( 𝒫  𝑈  ∩  Fin )  ∧  ∪  𝐽  =  ∪  𝑤 ) )  ∧  𝑋  ∈  𝑤 )  ∧  𝑥  ∈  𝑋 )  →  𝑋  ∈  𝑈 ) | 
						
							| 21 | 7 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑤  ∈  ( 𝒫  𝑈  ∩  Fin )  ∧  ∪  𝐽  =  ∪  𝑤 ) )  ∧  𝑋  ∈  𝑤 )  ∧  𝑥  ∈  𝑋 )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 22 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑤  ∈  ( 𝒫  𝑈  ∩  Fin )  ∧  ∪  𝐽  =  ∪  𝑤 ) )  ∧  𝑋  ∈  𝑤 )  ∧  𝑥  ∈  𝑋 )  →  𝑥  ∈  𝑋 ) | 
						
							| 23 |  | rpxr | ⊢ ( 1  ∈  ℝ+  →  1  ∈  ℝ* ) | 
						
							| 24 | 14 23 | mp1i | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑤  ∈  ( 𝒫  𝑈  ∩  Fin )  ∧  ∪  𝐽  =  ∪  𝑤 ) )  ∧  𝑋  ∈  𝑤 )  ∧  𝑥  ∈  𝑋 )  →  1  ∈  ℝ* ) | 
						
							| 25 |  | blssm | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋  ∧  1  ∈  ℝ* )  →  ( 𝑥 ( ball ‘ 𝐷 ) 1 )  ⊆  𝑋 ) | 
						
							| 26 | 21 22 24 25 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑤  ∈  ( 𝒫  𝑈  ∩  Fin )  ∧  ∪  𝐽  =  ∪  𝑤 ) )  ∧  𝑋  ∈  𝑤 )  ∧  𝑥  ∈  𝑋 )  →  ( 𝑥 ( ball ‘ 𝐷 ) 1 )  ⊆  𝑋 ) | 
						
							| 27 |  | sseq2 | ⊢ ( 𝑢  =  𝑋  →  ( ( 𝑥 ( ball ‘ 𝐷 ) 1 )  ⊆  𝑢  ↔  ( 𝑥 ( ball ‘ 𝐷 ) 1 )  ⊆  𝑋 ) ) | 
						
							| 28 | 27 | rspcev | ⊢ ( ( 𝑋  ∈  𝑈  ∧  ( 𝑥 ( ball ‘ 𝐷 ) 1 )  ⊆  𝑋 )  →  ∃ 𝑢  ∈  𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 1 )  ⊆  𝑢 ) | 
						
							| 29 | 20 26 28 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑤  ∈  ( 𝒫  𝑈  ∩  Fin )  ∧  ∪  𝐽  =  ∪  𝑤 ) )  ∧  𝑋  ∈  𝑤 )  ∧  𝑥  ∈  𝑋 )  →  ∃ 𝑢  ∈  𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 1 )  ⊆  𝑢 ) | 
						
							| 30 | 29 | ralrimiva | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ( 𝒫  𝑈  ∩  Fin )  ∧  ∪  𝐽  =  ∪  𝑤 ) )  ∧  𝑋  ∈  𝑤 )  →  ∀ 𝑥  ∈  𝑋 ∃ 𝑢  ∈  𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 1 )  ⊆  𝑢 ) | 
						
							| 31 |  | oveq2 | ⊢ ( 𝑑  =  1  →  ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 )  =  ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) | 
						
							| 32 | 31 | sseq1d | ⊢ ( 𝑑  =  1  →  ( ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 )  ⊆  𝑢  ↔  ( 𝑥 ( ball ‘ 𝐷 ) 1 )  ⊆  𝑢 ) ) | 
						
							| 33 | 32 | rexbidv | ⊢ ( 𝑑  =  1  →  ( ∃ 𝑢  ∈  𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 )  ⊆  𝑢  ↔  ∃ 𝑢  ∈  𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 1 )  ⊆  𝑢 ) ) | 
						
							| 34 | 33 | ralbidv | ⊢ ( 𝑑  =  1  →  ( ∀ 𝑥  ∈  𝑋 ∃ 𝑢  ∈  𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 )  ⊆  𝑢  ↔  ∀ 𝑥  ∈  𝑋 ∃ 𝑢  ∈  𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 1 )  ⊆  𝑢 ) ) | 
						
							| 35 | 34 | rspcev | ⊢ ( ( 1  ∈  ℝ+  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑢  ∈  𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 1 )  ⊆  𝑢 )  →  ∃ 𝑑  ∈  ℝ+ ∀ 𝑥  ∈  𝑋 ∃ 𝑢  ∈  𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 )  ⊆  𝑢 ) | 
						
							| 36 | 14 30 35 | sylancr | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ( 𝒫  𝑈  ∩  Fin )  ∧  ∪  𝐽  =  ∪  𝑤 ) )  ∧  𝑋  ∈  𝑤 )  →  ∃ 𝑑  ∈  ℝ+ ∀ 𝑥  ∈  𝑋 ∃ 𝑢  ∈  𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 )  ⊆  𝑢 ) | 
						
							| 37 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ( 𝒫  𝑈  ∩  Fin )  ∧  ∪  𝐽  =  ∪  𝑤 ) )  ∧  ¬  𝑋  ∈  𝑤 )  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 38 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ( 𝒫  𝑈  ∩  Fin )  ∧  ∪  𝐽  =  ∪  𝑤 ) )  ∧  ¬  𝑋  ∈  𝑤 )  →  𝐽  ∈  Comp ) | 
						
							| 39 | 17 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ( 𝒫  𝑈  ∩  Fin )  ∧  ∪  𝐽  =  ∪  𝑤 ) )  ∧  ¬  𝑋  ∈  𝑤 )  →  𝑤  ⊆  𝑈 ) | 
						
							| 40 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ( 𝒫  𝑈  ∩  Fin )  ∧  ∪  𝐽  =  ∪  𝑤 ) )  ∧  ¬  𝑋  ∈  𝑤 )  →  𝑈  ⊆  𝐽 ) | 
						
							| 41 | 39 40 | sstrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ( 𝒫  𝑈  ∩  Fin )  ∧  ∪  𝐽  =  ∪  𝑤 ) )  ∧  ¬  𝑋  ∈  𝑤 )  →  𝑤  ⊆  𝐽 ) | 
						
							| 42 | 9 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ( 𝒫  𝑈  ∩  Fin )  ∧  ∪  𝐽  =  ∪  𝑤 ) )  ∧  ¬  𝑋  ∈  𝑤 )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 43 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ( 𝒫  𝑈  ∩  Fin )  ∧  ∪  𝐽  =  ∪  𝑤 ) )  ∧  ¬  𝑋  ∈  𝑤 )  →  ∪  𝐽  =  ∪  𝑤 ) | 
						
							| 44 | 42 43 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ( 𝒫  𝑈  ∩  Fin )  ∧  ∪  𝐽  =  ∪  𝑤 ) )  ∧  ¬  𝑋  ∈  𝑤 )  →  𝑋  =  ∪  𝑤 ) | 
						
							| 45 | 15 | elin2d | ⊢ ( ( 𝜑  ∧  ( 𝑤  ∈  ( 𝒫  𝑈  ∩  Fin )  ∧  ∪  𝐽  =  ∪  𝑤 ) )  →  𝑤  ∈  Fin ) | 
						
							| 46 | 45 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ( 𝒫  𝑈  ∩  Fin )  ∧  ∪  𝐽  =  ∪  𝑤 ) )  ∧  ¬  𝑋  ∈  𝑤 )  →  𝑤  ∈  Fin ) | 
						
							| 47 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ( 𝒫  𝑈  ∩  Fin )  ∧  ∪  𝐽  =  ∪  𝑤 ) )  ∧  ¬  𝑋  ∈  𝑤 )  →  ¬  𝑋  ∈  𝑤 ) | 
						
							| 48 |  | eqid | ⊢ ( 𝑦  ∈  𝑋  ↦  Σ 𝑘  ∈  𝑤 inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑘 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) )  =  ( 𝑦  ∈  𝑋  ↦  Σ 𝑘  ∈  𝑤 inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑘 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 49 |  | eqid | ⊢ ( topGen ‘ ran  (,) )  =  ( topGen ‘ ran  (,) ) | 
						
							| 50 | 1 37 38 41 44 46 47 48 49 | lebnumlem3 | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ( 𝒫  𝑈  ∩  Fin )  ∧  ∪  𝐽  =  ∪  𝑤 ) )  ∧  ¬  𝑋  ∈  𝑤 )  →  ∃ 𝑑  ∈  ℝ+ ∀ 𝑥  ∈  𝑋 ∃ 𝑢  ∈  𝑤 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 )  ⊆  𝑢 ) | 
						
							| 51 |  | ssrexv | ⊢ ( 𝑤  ⊆  𝑈  →  ( ∃ 𝑢  ∈  𝑤 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 )  ⊆  𝑢  →  ∃ 𝑢  ∈  𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 )  ⊆  𝑢 ) ) | 
						
							| 52 | 39 51 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ( 𝒫  𝑈  ∩  Fin )  ∧  ∪  𝐽  =  ∪  𝑤 ) )  ∧  ¬  𝑋  ∈  𝑤 )  →  ( ∃ 𝑢  ∈  𝑤 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 )  ⊆  𝑢  →  ∃ 𝑢  ∈  𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 )  ⊆  𝑢 ) ) | 
						
							| 53 | 52 | ralimdv | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ( 𝒫  𝑈  ∩  Fin )  ∧  ∪  𝐽  =  ∪  𝑤 ) )  ∧  ¬  𝑋  ∈  𝑤 )  →  ( ∀ 𝑥  ∈  𝑋 ∃ 𝑢  ∈  𝑤 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 )  ⊆  𝑢  →  ∀ 𝑥  ∈  𝑋 ∃ 𝑢  ∈  𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 )  ⊆  𝑢 ) ) | 
						
							| 54 | 53 | reximdv | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ( 𝒫  𝑈  ∩  Fin )  ∧  ∪  𝐽  =  ∪  𝑤 ) )  ∧  ¬  𝑋  ∈  𝑤 )  →  ( ∃ 𝑑  ∈  ℝ+ ∀ 𝑥  ∈  𝑋 ∃ 𝑢  ∈  𝑤 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 )  ⊆  𝑢  →  ∃ 𝑑  ∈  ℝ+ ∀ 𝑥  ∈  𝑋 ∃ 𝑢  ∈  𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 )  ⊆  𝑢 ) ) | 
						
							| 55 | 50 54 | mpd | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ( 𝒫  𝑈  ∩  Fin )  ∧  ∪  𝐽  =  ∪  𝑤 ) )  ∧  ¬  𝑋  ∈  𝑤 )  →  ∃ 𝑑  ∈  ℝ+ ∀ 𝑥  ∈  𝑋 ∃ 𝑢  ∈  𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 )  ⊆  𝑢 ) | 
						
							| 56 | 36 55 | pm2.61dan | ⊢ ( ( 𝜑  ∧  ( 𝑤  ∈  ( 𝒫  𝑈  ∩  Fin )  ∧  ∪  𝐽  =  ∪  𝑤 ) )  →  ∃ 𝑑  ∈  ℝ+ ∀ 𝑥  ∈  𝑋 ∃ 𝑢  ∈  𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 )  ⊆  𝑢 ) | 
						
							| 57 | 13 56 | rexlimddv | ⊢ ( 𝜑  →  ∃ 𝑑  ∈  ℝ+ ∀ 𝑥  ∈  𝑋 ∃ 𝑢  ∈  𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 )  ⊆  𝑢 ) |