Step |
Hyp |
Ref |
Expression |
1 |
|
lebnum.j |
β’ π½ = ( MetOpen β π· ) |
2 |
|
lebnum.d |
β’ ( π β π· β ( Met β π ) ) |
3 |
|
lebnum.c |
β’ ( π β π½ β Comp ) |
4 |
|
lebnum.s |
β’ ( π β π β π½ ) |
5 |
|
lebnum.u |
β’ ( π β π = βͺ π ) |
6 |
|
lebnumlem1.u |
β’ ( π β π β Fin ) |
7 |
|
lebnumlem1.n |
β’ ( π β Β¬ π β π ) |
8 |
|
lebnumlem1.f |
β’ πΉ = ( π¦ β π β¦ Ξ£ π β π inf ( ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) , β* , < ) ) |
9 |
6
|
adantr |
β’ ( ( π β§ π¦ β π ) β π β Fin ) |
10 |
2
|
ad2antrr |
β’ ( ( ( π β§ π¦ β π ) β§ π β π ) β π· β ( Met β π ) ) |
11 |
|
difssd |
β’ ( ( ( π β§ π¦ β π ) β§ π β π ) β ( π β π ) β π ) |
12 |
4
|
adantr |
β’ ( ( π β§ π¦ β π ) β π β π½ ) |
13 |
12
|
sselda |
β’ ( ( ( π β§ π¦ β π ) β§ π β π ) β π β π½ ) |
14 |
|
elssuni |
β’ ( π β π½ β π β βͺ π½ ) |
15 |
13 14
|
syl |
β’ ( ( ( π β§ π¦ β π ) β§ π β π ) β π β βͺ π½ ) |
16 |
|
metxmet |
β’ ( π· β ( Met β π ) β π· β ( βMet β π ) ) |
17 |
2 16
|
syl |
β’ ( π β π· β ( βMet β π ) ) |
18 |
1
|
mopnuni |
β’ ( π· β ( βMet β π ) β π = βͺ π½ ) |
19 |
17 18
|
syl |
β’ ( π β π = βͺ π½ ) |
20 |
19
|
ad2antrr |
β’ ( ( ( π β§ π¦ β π ) β§ π β π ) β π = βͺ π½ ) |
21 |
15 20
|
sseqtrrd |
β’ ( ( ( π β§ π¦ β π ) β§ π β π ) β π β π ) |
22 |
|
eleq1 |
β’ ( π = π β ( π β π β π β π ) ) |
23 |
22
|
notbid |
β’ ( π = π β ( Β¬ π β π β Β¬ π β π ) ) |
24 |
7 23
|
syl5ibrcom |
β’ ( π β ( π = π β Β¬ π β π ) ) |
25 |
24
|
necon2ad |
β’ ( π β ( π β π β π β π ) ) |
26 |
25
|
adantr |
β’ ( ( π β§ π¦ β π ) β ( π β π β π β π ) ) |
27 |
26
|
imp |
β’ ( ( ( π β§ π¦ β π ) β§ π β π ) β π β π ) |
28 |
|
pssdifn0 |
β’ ( ( π β π β§ π β π ) β ( π β π ) β β
) |
29 |
21 27 28
|
syl2anc |
β’ ( ( ( π β§ π¦ β π ) β§ π β π ) β ( π β π ) β β
) |
30 |
|
eqid |
β’ ( π¦ β π β¦ inf ( ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) , β* , < ) ) = ( π¦ β π β¦ inf ( ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) , β* , < ) ) |
31 |
30
|
metdsre |
β’ ( ( π· β ( Met β π ) β§ ( π β π ) β π β§ ( π β π ) β β
) β ( π¦ β π β¦ inf ( ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) , β* , < ) ) : π βΆ β ) |
32 |
10 11 29 31
|
syl3anc |
β’ ( ( ( π β§ π¦ β π ) β§ π β π ) β ( π¦ β π β¦ inf ( ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) , β* , < ) ) : π βΆ β ) |
33 |
30
|
fmpt |
β’ ( β π¦ β π inf ( ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) , β* , < ) β β β ( π¦ β π β¦ inf ( ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) , β* , < ) ) : π βΆ β ) |
34 |
32 33
|
sylibr |
β’ ( ( ( π β§ π¦ β π ) β§ π β π ) β β π¦ β π inf ( ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) , β* , < ) β β ) |
35 |
|
simplr |
β’ ( ( ( π β§ π¦ β π ) β§ π β π ) β π¦ β π ) |
36 |
|
rsp |
β’ ( β π¦ β π inf ( ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) , β* , < ) β β β ( π¦ β π β inf ( ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) , β* , < ) β β ) ) |
37 |
34 35 36
|
sylc |
β’ ( ( ( π β§ π¦ β π ) β§ π β π ) β inf ( ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) , β* , < ) β β ) |
38 |
9 37
|
fsumrecl |
β’ ( ( π β§ π¦ β π ) β Ξ£ π β π inf ( ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) , β* , < ) β β ) |
39 |
5
|
eleq2d |
β’ ( π β ( π¦ β π β π¦ β βͺ π ) ) |
40 |
39
|
biimpa |
β’ ( ( π β§ π¦ β π ) β π¦ β βͺ π ) |
41 |
|
eluni2 |
β’ ( π¦ β βͺ π β β π β π π¦ β π ) |
42 |
40 41
|
sylib |
β’ ( ( π β§ π¦ β π ) β β π β π π¦ β π ) |
43 |
|
0red |
β’ ( ( ( π β§ π¦ β π ) β§ ( π β π β§ π¦ β π ) ) β 0 β β ) |
44 |
|
simplr |
β’ ( ( ( π β§ π¦ β π ) β§ ( π β π β§ π¦ β π ) ) β π¦ β π ) |
45 |
|
eqid |
β’ ( π€ β π β¦ inf ( ran ( π§ β ( π β π ) β¦ ( π€ π· π§ ) ) , β* , < ) ) = ( π€ β π β¦ inf ( ran ( π§ β ( π β π ) β¦ ( π€ π· π§ ) ) , β* , < ) ) |
46 |
45
|
metdsval |
β’ ( π¦ β π β ( ( π€ β π β¦ inf ( ran ( π§ β ( π β π ) β¦ ( π€ π· π§ ) ) , β* , < ) ) β π¦ ) = inf ( ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) , β* , < ) ) |
47 |
44 46
|
syl |
β’ ( ( ( π β§ π¦ β π ) β§ ( π β π β§ π¦ β π ) ) β ( ( π€ β π β¦ inf ( ran ( π§ β ( π β π ) β¦ ( π€ π· π§ ) ) , β* , < ) ) β π¦ ) = inf ( ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) , β* , < ) ) |
48 |
2
|
ad2antrr |
β’ ( ( ( π β§ π¦ β π ) β§ ( π β π β§ π¦ β π ) ) β π· β ( Met β π ) ) |
49 |
|
difssd |
β’ ( ( ( π β§ π¦ β π ) β§ ( π β π β§ π¦ β π ) ) β ( π β π ) β π ) |
50 |
4
|
ad2antrr |
β’ ( ( ( π β§ π¦ β π ) β§ ( π β π β§ π¦ β π ) ) β π β π½ ) |
51 |
|
simprl |
β’ ( ( ( π β§ π¦ β π ) β§ ( π β π β§ π¦ β π ) ) β π β π ) |
52 |
50 51
|
sseldd |
β’ ( ( ( π β§ π¦ β π ) β§ ( π β π β§ π¦ β π ) ) β π β π½ ) |
53 |
|
elssuni |
β’ ( π β π½ β π β βͺ π½ ) |
54 |
52 53
|
syl |
β’ ( ( ( π β§ π¦ β π ) β§ ( π β π β§ π¦ β π ) ) β π β βͺ π½ ) |
55 |
48 16 18
|
3syl |
β’ ( ( ( π β§ π¦ β π ) β§ ( π β π β§ π¦ β π ) ) β π = βͺ π½ ) |
56 |
54 55
|
sseqtrrd |
β’ ( ( ( π β§ π¦ β π ) β§ ( π β π β§ π¦ β π ) ) β π β π ) |
57 |
|
eleq1 |
β’ ( π = π β ( π β π β π β π ) ) |
58 |
57
|
notbid |
β’ ( π = π β ( Β¬ π β π β Β¬ π β π ) ) |
59 |
7 58
|
syl5ibrcom |
β’ ( π β ( π = π β Β¬ π β π ) ) |
60 |
59
|
necon2ad |
β’ ( π β ( π β π β π β π ) ) |
61 |
60
|
ad2antrr |
β’ ( ( ( π β§ π¦ β π ) β§ ( π β π β§ π¦ β π ) ) β ( π β π β π β π ) ) |
62 |
51 61
|
mpd |
β’ ( ( ( π β§ π¦ β π ) β§ ( π β π β§ π¦ β π ) ) β π β π ) |
63 |
|
pssdifn0 |
β’ ( ( π β π β§ π β π ) β ( π β π ) β β
) |
64 |
56 62 63
|
syl2anc |
β’ ( ( ( π β§ π¦ β π ) β§ ( π β π β§ π¦ β π ) ) β ( π β π ) β β
) |
65 |
45
|
metdsre |
β’ ( ( π· β ( Met β π ) β§ ( π β π ) β π β§ ( π β π ) β β
) β ( π€ β π β¦ inf ( ran ( π§ β ( π β π ) β¦ ( π€ π· π§ ) ) , β* , < ) ) : π βΆ β ) |
66 |
48 49 64 65
|
syl3anc |
β’ ( ( ( π β§ π¦ β π ) β§ ( π β π β§ π¦ β π ) ) β ( π€ β π β¦ inf ( ran ( π§ β ( π β π ) β¦ ( π€ π· π§ ) ) , β* , < ) ) : π βΆ β ) |
67 |
66 44
|
ffvelcdmd |
β’ ( ( ( π β§ π¦ β π ) β§ ( π β π β§ π¦ β π ) ) β ( ( π€ β π β¦ inf ( ran ( π§ β ( π β π ) β¦ ( π€ π· π§ ) ) , β* , < ) ) β π¦ ) β β ) |
68 |
47 67
|
eqeltrrd |
β’ ( ( ( π β§ π¦ β π ) β§ ( π β π β§ π¦ β π ) ) β inf ( ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) , β* , < ) β β ) |
69 |
38
|
adantr |
β’ ( ( ( π β§ π¦ β π ) β§ ( π β π β§ π¦ β π ) ) β Ξ£ π β π inf ( ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) , β* , < ) β β ) |
70 |
17
|
ad2antrr |
β’ ( ( ( π β§ π¦ β π ) β§ ( π β π β§ π¦ β π ) ) β π· β ( βMet β π ) ) |
71 |
45
|
metdsf |
β’ ( ( π· β ( βMet β π ) β§ ( π β π ) β π ) β ( π€ β π β¦ inf ( ran ( π§ β ( π β π ) β¦ ( π€ π· π§ ) ) , β* , < ) ) : π βΆ ( 0 [,] +β ) ) |
72 |
70 49 71
|
syl2anc |
β’ ( ( ( π β§ π¦ β π ) β§ ( π β π β§ π¦ β π ) ) β ( π€ β π β¦ inf ( ran ( π§ β ( π β π ) β¦ ( π€ π· π§ ) ) , β* , < ) ) : π βΆ ( 0 [,] +β ) ) |
73 |
72 44
|
ffvelcdmd |
β’ ( ( ( π β§ π¦ β π ) β§ ( π β π β§ π¦ β π ) ) β ( ( π€ β π β¦ inf ( ran ( π§ β ( π β π ) β¦ ( π€ π· π§ ) ) , β* , < ) ) β π¦ ) β ( 0 [,] +β ) ) |
74 |
|
elxrge0 |
β’ ( ( ( π€ β π β¦ inf ( ran ( π§ β ( π β π ) β¦ ( π€ π· π§ ) ) , β* , < ) ) β π¦ ) β ( 0 [,] +β ) β ( ( ( π€ β π β¦ inf ( ran ( π§ β ( π β π ) β¦ ( π€ π· π§ ) ) , β* , < ) ) β π¦ ) β β* β§ 0 β€ ( ( π€ β π β¦ inf ( ran ( π§ β ( π β π ) β¦ ( π€ π· π§ ) ) , β* , < ) ) β π¦ ) ) ) |
75 |
73 74
|
sylib |
β’ ( ( ( π β§ π¦ β π ) β§ ( π β π β§ π¦ β π ) ) β ( ( ( π€ β π β¦ inf ( ran ( π§ β ( π β π ) β¦ ( π€ π· π§ ) ) , β* , < ) ) β π¦ ) β β* β§ 0 β€ ( ( π€ β π β¦ inf ( ran ( π§ β ( π β π ) β¦ ( π€ π· π§ ) ) , β* , < ) ) β π¦ ) ) ) |
76 |
75
|
simprd |
β’ ( ( ( π β§ π¦ β π ) β§ ( π β π β§ π¦ β π ) ) β 0 β€ ( ( π€ β π β¦ inf ( ran ( π§ β ( π β π ) β¦ ( π€ π· π§ ) ) , β* , < ) ) β π¦ ) ) |
77 |
|
elndif |
β’ ( π¦ β π β Β¬ π¦ β ( π β π ) ) |
78 |
77
|
ad2antll |
β’ ( ( ( π β§ π¦ β π ) β§ ( π β π β§ π¦ β π ) ) β Β¬ π¦ β ( π β π ) ) |
79 |
55
|
difeq1d |
β’ ( ( ( π β§ π¦ β π ) β§ ( π β π β§ π¦ β π ) ) β ( π β π ) = ( βͺ π½ β π ) ) |
80 |
1
|
mopntop |
β’ ( π· β ( βMet β π ) β π½ β Top ) |
81 |
70 80
|
syl |
β’ ( ( ( π β§ π¦ β π ) β§ ( π β π β§ π¦ β π ) ) β π½ β Top ) |
82 |
|
eqid |
β’ βͺ π½ = βͺ π½ |
83 |
82
|
opncld |
β’ ( ( π½ β Top β§ π β π½ ) β ( βͺ π½ β π ) β ( Clsd β π½ ) ) |
84 |
81 52 83
|
syl2anc |
β’ ( ( ( π β§ π¦ β π ) β§ ( π β π β§ π¦ β π ) ) β ( βͺ π½ β π ) β ( Clsd β π½ ) ) |
85 |
79 84
|
eqeltrd |
β’ ( ( ( π β§ π¦ β π ) β§ ( π β π β§ π¦ β π ) ) β ( π β π ) β ( Clsd β π½ ) ) |
86 |
|
cldcls |
β’ ( ( π β π ) β ( Clsd β π½ ) β ( ( cls β π½ ) β ( π β π ) ) = ( π β π ) ) |
87 |
85 86
|
syl |
β’ ( ( ( π β§ π¦ β π ) β§ ( π β π β§ π¦ β π ) ) β ( ( cls β π½ ) β ( π β π ) ) = ( π β π ) ) |
88 |
78 87
|
neleqtrrd |
β’ ( ( ( π β§ π¦ β π ) β§ ( π β π β§ π¦ β π ) ) β Β¬ π¦ β ( ( cls β π½ ) β ( π β π ) ) ) |
89 |
45 1
|
metdseq0 |
β’ ( ( π· β ( βMet β π ) β§ ( π β π ) β π β§ π¦ β π ) β ( ( ( π€ β π β¦ inf ( ran ( π§ β ( π β π ) β¦ ( π€ π· π§ ) ) , β* , < ) ) β π¦ ) = 0 β π¦ β ( ( cls β π½ ) β ( π β π ) ) ) ) |
90 |
70 49 44 89
|
syl3anc |
β’ ( ( ( π β§ π¦ β π ) β§ ( π β π β§ π¦ β π ) ) β ( ( ( π€ β π β¦ inf ( ran ( π§ β ( π β π ) β¦ ( π€ π· π§ ) ) , β* , < ) ) β π¦ ) = 0 β π¦ β ( ( cls β π½ ) β ( π β π ) ) ) ) |
91 |
90
|
necon3abid |
β’ ( ( ( π β§ π¦ β π ) β§ ( π β π β§ π¦ β π ) ) β ( ( ( π€ β π β¦ inf ( ran ( π§ β ( π β π ) β¦ ( π€ π· π§ ) ) , β* , < ) ) β π¦ ) β 0 β Β¬ π¦ β ( ( cls β π½ ) β ( π β π ) ) ) ) |
92 |
88 91
|
mpbird |
β’ ( ( ( π β§ π¦ β π ) β§ ( π β π β§ π¦ β π ) ) β ( ( π€ β π β¦ inf ( ran ( π§ β ( π β π ) β¦ ( π€ π· π§ ) ) , β* , < ) ) β π¦ ) β 0 ) |
93 |
67 76 92
|
ne0gt0d |
β’ ( ( ( π β§ π¦ β π ) β§ ( π β π β§ π¦ β π ) ) β 0 < ( ( π€ β π β¦ inf ( ran ( π§ β ( π β π ) β¦ ( π€ π· π§ ) ) , β* , < ) ) β π¦ ) ) |
94 |
93 47
|
breqtrd |
β’ ( ( ( π β§ π¦ β π ) β§ ( π β π β§ π¦ β π ) ) β 0 < inf ( ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) , β* , < ) ) |
95 |
6
|
ad2antrr |
β’ ( ( ( π β§ π¦ β π ) β§ ( π β π β§ π¦ β π ) ) β π β Fin ) |
96 |
37
|
adantlr |
β’ ( ( ( ( π β§ π¦ β π ) β§ ( π β π β§ π¦ β π ) ) β§ π β π ) β inf ( ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) , β* , < ) β β ) |
97 |
17
|
ad2antrr |
β’ ( ( ( π β§ π¦ β π ) β§ π β π ) β π· β ( βMet β π ) ) |
98 |
30
|
metdsf |
β’ ( ( π· β ( βMet β π ) β§ ( π β π ) β π ) β ( π¦ β π β¦ inf ( ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) , β* , < ) ) : π βΆ ( 0 [,] +β ) ) |
99 |
97 11 98
|
syl2anc |
β’ ( ( ( π β§ π¦ β π ) β§ π β π ) β ( π¦ β π β¦ inf ( ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) , β* , < ) ) : π βΆ ( 0 [,] +β ) ) |
100 |
30
|
fmpt |
β’ ( β π¦ β π inf ( ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) , β* , < ) β ( 0 [,] +β ) β ( π¦ β π β¦ inf ( ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) , β* , < ) ) : π βΆ ( 0 [,] +β ) ) |
101 |
99 100
|
sylibr |
β’ ( ( ( π β§ π¦ β π ) β§ π β π ) β β π¦ β π inf ( ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) , β* , < ) β ( 0 [,] +β ) ) |
102 |
|
rsp |
β’ ( β π¦ β π inf ( ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) , β* , < ) β ( 0 [,] +β ) β ( π¦ β π β inf ( ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) , β* , < ) β ( 0 [,] +β ) ) ) |
103 |
101 35 102
|
sylc |
β’ ( ( ( π β§ π¦ β π ) β§ π β π ) β inf ( ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) , β* , < ) β ( 0 [,] +β ) ) |
104 |
|
elxrge0 |
β’ ( inf ( ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) , β* , < ) β ( 0 [,] +β ) β ( inf ( ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) , β* , < ) β β* β§ 0 β€ inf ( ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) , β* , < ) ) ) |
105 |
103 104
|
sylib |
β’ ( ( ( π β§ π¦ β π ) β§ π β π ) β ( inf ( ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) , β* , < ) β β* β§ 0 β€ inf ( ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) , β* , < ) ) ) |
106 |
105
|
simprd |
β’ ( ( ( π β§ π¦ β π ) β§ π β π ) β 0 β€ inf ( ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) , β* , < ) ) |
107 |
106
|
adantlr |
β’ ( ( ( ( π β§ π¦ β π ) β§ ( π β π β§ π¦ β π ) ) β§ π β π ) β 0 β€ inf ( ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) , β* , < ) ) |
108 |
|
difeq2 |
β’ ( π = π β ( π β π ) = ( π β π ) ) |
109 |
108
|
mpteq1d |
β’ ( π = π β ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) = ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) ) |
110 |
109
|
rneqd |
β’ ( π = π β ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) = ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) ) |
111 |
110
|
infeq1d |
β’ ( π = π β inf ( ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) , β* , < ) = inf ( ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) , β* , < ) ) |
112 |
95 96 107 111 51
|
fsumge1 |
β’ ( ( ( π β§ π¦ β π ) β§ ( π β π β§ π¦ β π ) ) β inf ( ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) , β* , < ) β€ Ξ£ π β π inf ( ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) , β* , < ) ) |
113 |
43 68 69 94 112
|
ltletrd |
β’ ( ( ( π β§ π¦ β π ) β§ ( π β π β§ π¦ β π ) ) β 0 < Ξ£ π β π inf ( ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) , β* , < ) ) |
114 |
42 113
|
rexlimddv |
β’ ( ( π β§ π¦ β π ) β 0 < Ξ£ π β π inf ( ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) , β* , < ) ) |
115 |
38 114
|
elrpd |
β’ ( ( π β§ π¦ β π ) β Ξ£ π β π inf ( ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) , β* , < ) β β+ ) |
116 |
115 8
|
fmptd |
β’ ( π β πΉ : π βΆ β+ ) |