| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lebnum.j | ⊢ 𝐽  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 2 |  | lebnum.d | ⊢ ( 𝜑  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 3 |  | lebnum.c | ⊢ ( 𝜑  →  𝐽  ∈  Comp ) | 
						
							| 4 |  | lebnum.s | ⊢ ( 𝜑  →  𝑈  ⊆  𝐽 ) | 
						
							| 5 |  | lebnum.u | ⊢ ( 𝜑  →  𝑋  =  ∪  𝑈 ) | 
						
							| 6 |  | lebnumlem1.u | ⊢ ( 𝜑  →  𝑈  ∈  Fin ) | 
						
							| 7 |  | lebnumlem1.n | ⊢ ( 𝜑  →  ¬  𝑋  ∈  𝑈 ) | 
						
							| 8 |  | lebnumlem1.f | ⊢ 𝐹  =  ( 𝑦  ∈  𝑋  ↦  Σ 𝑘  ∈  𝑈 inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑘 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 9 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  𝑈  ∈  Fin ) | 
						
							| 10 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  𝑘  ∈  𝑈 )  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 11 |  | difssd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  𝑘  ∈  𝑈 )  →  ( 𝑋  ∖  𝑘 )  ⊆  𝑋 ) | 
						
							| 12 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  𝑈  ⊆  𝐽 ) | 
						
							| 13 | 12 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  𝑘  ∈  𝑈 )  →  𝑘  ∈  𝐽 ) | 
						
							| 14 |  | elssuni | ⊢ ( 𝑘  ∈  𝐽  →  𝑘  ⊆  ∪  𝐽 ) | 
						
							| 15 | 13 14 | syl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  𝑘  ∈  𝑈 )  →  𝑘  ⊆  ∪  𝐽 ) | 
						
							| 16 |  | metxmet | ⊢ ( 𝐷  ∈  ( Met ‘ 𝑋 )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 17 | 2 16 | syl | ⊢ ( 𝜑  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 18 | 1 | mopnuni | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 19 | 17 18 | syl | ⊢ ( 𝜑  →  𝑋  =  ∪  𝐽 ) | 
						
							| 20 | 19 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  𝑘  ∈  𝑈 )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 21 | 15 20 | sseqtrrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  𝑘  ∈  𝑈 )  →  𝑘  ⊆  𝑋 ) | 
						
							| 22 |  | eleq1 | ⊢ ( 𝑘  =  𝑋  →  ( 𝑘  ∈  𝑈  ↔  𝑋  ∈  𝑈 ) ) | 
						
							| 23 | 22 | notbid | ⊢ ( 𝑘  =  𝑋  →  ( ¬  𝑘  ∈  𝑈  ↔  ¬  𝑋  ∈  𝑈 ) ) | 
						
							| 24 | 7 23 | syl5ibrcom | ⊢ ( 𝜑  →  ( 𝑘  =  𝑋  →  ¬  𝑘  ∈  𝑈 ) ) | 
						
							| 25 | 24 | necon2ad | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝑈  →  𝑘  ≠  𝑋 ) ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  ( 𝑘  ∈  𝑈  →  𝑘  ≠  𝑋 ) ) | 
						
							| 27 | 26 | imp | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  𝑘  ∈  𝑈 )  →  𝑘  ≠  𝑋 ) | 
						
							| 28 |  | pssdifn0 | ⊢ ( ( 𝑘  ⊆  𝑋  ∧  𝑘  ≠  𝑋 )  →  ( 𝑋  ∖  𝑘 )  ≠  ∅ ) | 
						
							| 29 | 21 27 28 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  𝑘  ∈  𝑈 )  →  ( 𝑋  ∖  𝑘 )  ≠  ∅ ) | 
						
							| 30 |  | eqid | ⊢ ( 𝑦  ∈  𝑋  ↦  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑘 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) )  =  ( 𝑦  ∈  𝑋  ↦  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑘 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 31 | 30 | metdsre | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  ( 𝑋  ∖  𝑘 )  ⊆  𝑋  ∧  ( 𝑋  ∖  𝑘 )  ≠  ∅ )  →  ( 𝑦  ∈  𝑋  ↦  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑘 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) ) : 𝑋 ⟶ ℝ ) | 
						
							| 32 | 10 11 29 31 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  𝑘  ∈  𝑈 )  →  ( 𝑦  ∈  𝑋  ↦  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑘 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) ) : 𝑋 ⟶ ℝ ) | 
						
							| 33 | 30 | fmpt | ⊢ ( ∀ 𝑦  ∈  𝑋 inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑘 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  )  ∈  ℝ  ↔  ( 𝑦  ∈  𝑋  ↦  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑘 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) ) : 𝑋 ⟶ ℝ ) | 
						
							| 34 | 32 33 | sylibr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  𝑘  ∈  𝑈 )  →  ∀ 𝑦  ∈  𝑋 inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑘 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  )  ∈  ℝ ) | 
						
							| 35 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  𝑘  ∈  𝑈 )  →  𝑦  ∈  𝑋 ) | 
						
							| 36 |  | rsp | ⊢ ( ∀ 𝑦  ∈  𝑋 inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑘 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  )  ∈  ℝ  →  ( 𝑦  ∈  𝑋  →  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑘 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  )  ∈  ℝ ) ) | 
						
							| 37 | 34 35 36 | sylc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  𝑘  ∈  𝑈 )  →  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑘 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  )  ∈  ℝ ) | 
						
							| 38 | 9 37 | fsumrecl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  Σ 𝑘  ∈  𝑈 inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑘 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  )  ∈  ℝ ) | 
						
							| 39 | 5 | eleq2d | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝑋  ↔  𝑦  ∈  ∪  𝑈 ) ) | 
						
							| 40 | 39 | biimpa | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  𝑦  ∈  ∪  𝑈 ) | 
						
							| 41 |  | eluni2 | ⊢ ( 𝑦  ∈  ∪  𝑈  ↔  ∃ 𝑚  ∈  𝑈 𝑦  ∈  𝑚 ) | 
						
							| 42 | 40 41 | sylib | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  ∃ 𝑚  ∈  𝑈 𝑦  ∈  𝑚 ) | 
						
							| 43 |  | 0red | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑚  ∈  𝑈  ∧  𝑦  ∈  𝑚 ) )  →  0  ∈  ℝ ) | 
						
							| 44 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑚  ∈  𝑈  ∧  𝑦  ∈  𝑚 ) )  →  𝑦  ∈  𝑋 ) | 
						
							| 45 |  | eqid | ⊢ ( 𝑤  ∈  𝑋  ↦  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑚 )  ↦  ( 𝑤 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) )  =  ( 𝑤  ∈  𝑋  ↦  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑚 )  ↦  ( 𝑤 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 46 | 45 | metdsval | ⊢ ( 𝑦  ∈  𝑋  →  ( ( 𝑤  ∈  𝑋  ↦  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑚 )  ↦  ( 𝑤 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) ) ‘ 𝑦 )  =  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑚 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 47 | 44 46 | syl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑚  ∈  𝑈  ∧  𝑦  ∈  𝑚 ) )  →  ( ( 𝑤  ∈  𝑋  ↦  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑚 )  ↦  ( 𝑤 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) ) ‘ 𝑦 )  =  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑚 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 48 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑚  ∈  𝑈  ∧  𝑦  ∈  𝑚 ) )  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 49 |  | difssd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑚  ∈  𝑈  ∧  𝑦  ∈  𝑚 ) )  →  ( 𝑋  ∖  𝑚 )  ⊆  𝑋 ) | 
						
							| 50 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑚  ∈  𝑈  ∧  𝑦  ∈  𝑚 ) )  →  𝑈  ⊆  𝐽 ) | 
						
							| 51 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑚  ∈  𝑈  ∧  𝑦  ∈  𝑚 ) )  →  𝑚  ∈  𝑈 ) | 
						
							| 52 | 50 51 | sseldd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑚  ∈  𝑈  ∧  𝑦  ∈  𝑚 ) )  →  𝑚  ∈  𝐽 ) | 
						
							| 53 |  | elssuni | ⊢ ( 𝑚  ∈  𝐽  →  𝑚  ⊆  ∪  𝐽 ) | 
						
							| 54 | 52 53 | syl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑚  ∈  𝑈  ∧  𝑦  ∈  𝑚 ) )  →  𝑚  ⊆  ∪  𝐽 ) | 
						
							| 55 | 48 16 18 | 3syl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑚  ∈  𝑈  ∧  𝑦  ∈  𝑚 ) )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 56 | 54 55 | sseqtrrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑚  ∈  𝑈  ∧  𝑦  ∈  𝑚 ) )  →  𝑚  ⊆  𝑋 ) | 
						
							| 57 |  | eleq1 | ⊢ ( 𝑚  =  𝑋  →  ( 𝑚  ∈  𝑈  ↔  𝑋  ∈  𝑈 ) ) | 
						
							| 58 | 57 | notbid | ⊢ ( 𝑚  =  𝑋  →  ( ¬  𝑚  ∈  𝑈  ↔  ¬  𝑋  ∈  𝑈 ) ) | 
						
							| 59 | 7 58 | syl5ibrcom | ⊢ ( 𝜑  →  ( 𝑚  =  𝑋  →  ¬  𝑚  ∈  𝑈 ) ) | 
						
							| 60 | 59 | necon2ad | ⊢ ( 𝜑  →  ( 𝑚  ∈  𝑈  →  𝑚  ≠  𝑋 ) ) | 
						
							| 61 | 60 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑚  ∈  𝑈  ∧  𝑦  ∈  𝑚 ) )  →  ( 𝑚  ∈  𝑈  →  𝑚  ≠  𝑋 ) ) | 
						
							| 62 | 51 61 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑚  ∈  𝑈  ∧  𝑦  ∈  𝑚 ) )  →  𝑚  ≠  𝑋 ) | 
						
							| 63 |  | pssdifn0 | ⊢ ( ( 𝑚  ⊆  𝑋  ∧  𝑚  ≠  𝑋 )  →  ( 𝑋  ∖  𝑚 )  ≠  ∅ ) | 
						
							| 64 | 56 62 63 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑚  ∈  𝑈  ∧  𝑦  ∈  𝑚 ) )  →  ( 𝑋  ∖  𝑚 )  ≠  ∅ ) | 
						
							| 65 | 45 | metdsre | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  ( 𝑋  ∖  𝑚 )  ⊆  𝑋  ∧  ( 𝑋  ∖  𝑚 )  ≠  ∅ )  →  ( 𝑤  ∈  𝑋  ↦  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑚 )  ↦  ( 𝑤 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) ) : 𝑋 ⟶ ℝ ) | 
						
							| 66 | 48 49 64 65 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑚  ∈  𝑈  ∧  𝑦  ∈  𝑚 ) )  →  ( 𝑤  ∈  𝑋  ↦  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑚 )  ↦  ( 𝑤 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) ) : 𝑋 ⟶ ℝ ) | 
						
							| 67 | 66 44 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑚  ∈  𝑈  ∧  𝑦  ∈  𝑚 ) )  →  ( ( 𝑤  ∈  𝑋  ↦  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑚 )  ↦  ( 𝑤 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) ) ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 68 | 47 67 | eqeltrrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑚  ∈  𝑈  ∧  𝑦  ∈  𝑚 ) )  →  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑚 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  )  ∈  ℝ ) | 
						
							| 69 | 38 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑚  ∈  𝑈  ∧  𝑦  ∈  𝑚 ) )  →  Σ 𝑘  ∈  𝑈 inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑘 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  )  ∈  ℝ ) | 
						
							| 70 | 17 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑚  ∈  𝑈  ∧  𝑦  ∈  𝑚 ) )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 71 | 45 | metdsf | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  ( 𝑋  ∖  𝑚 )  ⊆  𝑋 )  →  ( 𝑤  ∈  𝑋  ↦  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑚 )  ↦  ( 𝑤 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) ) : 𝑋 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 72 | 70 49 71 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑚  ∈  𝑈  ∧  𝑦  ∈  𝑚 ) )  →  ( 𝑤  ∈  𝑋  ↦  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑚 )  ↦  ( 𝑤 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) ) : 𝑋 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 73 | 72 44 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑚  ∈  𝑈  ∧  𝑦  ∈  𝑚 ) )  →  ( ( 𝑤  ∈  𝑋  ↦  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑚 )  ↦  ( 𝑤 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) ) ‘ 𝑦 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 74 |  | elxrge0 | ⊢ ( ( ( 𝑤  ∈  𝑋  ↦  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑚 )  ↦  ( 𝑤 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) ) ‘ 𝑦 )  ∈  ( 0 [,] +∞ )  ↔  ( ( ( 𝑤  ∈  𝑋  ↦  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑚 )  ↦  ( 𝑤 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) ) ‘ 𝑦 )  ∈  ℝ*  ∧  0  ≤  ( ( 𝑤  ∈  𝑋  ↦  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑚 )  ↦  ( 𝑤 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) ) ‘ 𝑦 ) ) ) | 
						
							| 75 | 73 74 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑚  ∈  𝑈  ∧  𝑦  ∈  𝑚 ) )  →  ( ( ( 𝑤  ∈  𝑋  ↦  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑚 )  ↦  ( 𝑤 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) ) ‘ 𝑦 )  ∈  ℝ*  ∧  0  ≤  ( ( 𝑤  ∈  𝑋  ↦  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑚 )  ↦  ( 𝑤 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) ) ‘ 𝑦 ) ) ) | 
						
							| 76 | 75 | simprd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑚  ∈  𝑈  ∧  𝑦  ∈  𝑚 ) )  →  0  ≤  ( ( 𝑤  ∈  𝑋  ↦  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑚 )  ↦  ( 𝑤 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) ) ‘ 𝑦 ) ) | 
						
							| 77 |  | elndif | ⊢ ( 𝑦  ∈  𝑚  →  ¬  𝑦  ∈  ( 𝑋  ∖  𝑚 ) ) | 
						
							| 78 | 77 | ad2antll | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑚  ∈  𝑈  ∧  𝑦  ∈  𝑚 ) )  →  ¬  𝑦  ∈  ( 𝑋  ∖  𝑚 ) ) | 
						
							| 79 | 55 | difeq1d | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑚  ∈  𝑈  ∧  𝑦  ∈  𝑚 ) )  →  ( 𝑋  ∖  𝑚 )  =  ( ∪  𝐽  ∖  𝑚 ) ) | 
						
							| 80 | 1 | mopntop | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝐽  ∈  Top ) | 
						
							| 81 | 70 80 | syl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑚  ∈  𝑈  ∧  𝑦  ∈  𝑚 ) )  →  𝐽  ∈  Top ) | 
						
							| 82 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 83 | 82 | opncld | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑚  ∈  𝐽 )  →  ( ∪  𝐽  ∖  𝑚 )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 84 | 81 52 83 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑚  ∈  𝑈  ∧  𝑦  ∈  𝑚 ) )  →  ( ∪  𝐽  ∖  𝑚 )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 85 | 79 84 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑚  ∈  𝑈  ∧  𝑦  ∈  𝑚 ) )  →  ( 𝑋  ∖  𝑚 )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 86 |  | cldcls | ⊢ ( ( 𝑋  ∖  𝑚 )  ∈  ( Clsd ‘ 𝐽 )  →  ( ( cls ‘ 𝐽 ) ‘ ( 𝑋  ∖  𝑚 ) )  =  ( 𝑋  ∖  𝑚 ) ) | 
						
							| 87 | 85 86 | syl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑚  ∈  𝑈  ∧  𝑦  ∈  𝑚 ) )  →  ( ( cls ‘ 𝐽 ) ‘ ( 𝑋  ∖  𝑚 ) )  =  ( 𝑋  ∖  𝑚 ) ) | 
						
							| 88 | 78 87 | neleqtrrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑚  ∈  𝑈  ∧  𝑦  ∈  𝑚 ) )  →  ¬  𝑦  ∈  ( ( cls ‘ 𝐽 ) ‘ ( 𝑋  ∖  𝑚 ) ) ) | 
						
							| 89 | 45 1 | metdseq0 | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  ( 𝑋  ∖  𝑚 )  ⊆  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( ( ( 𝑤  ∈  𝑋  ↦  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑚 )  ↦  ( 𝑤 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) ) ‘ 𝑦 )  =  0  ↔  𝑦  ∈  ( ( cls ‘ 𝐽 ) ‘ ( 𝑋  ∖  𝑚 ) ) ) ) | 
						
							| 90 | 70 49 44 89 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑚  ∈  𝑈  ∧  𝑦  ∈  𝑚 ) )  →  ( ( ( 𝑤  ∈  𝑋  ↦  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑚 )  ↦  ( 𝑤 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) ) ‘ 𝑦 )  =  0  ↔  𝑦  ∈  ( ( cls ‘ 𝐽 ) ‘ ( 𝑋  ∖  𝑚 ) ) ) ) | 
						
							| 91 | 90 | necon3abid | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑚  ∈  𝑈  ∧  𝑦  ∈  𝑚 ) )  →  ( ( ( 𝑤  ∈  𝑋  ↦  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑚 )  ↦  ( 𝑤 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) ) ‘ 𝑦 )  ≠  0  ↔  ¬  𝑦  ∈  ( ( cls ‘ 𝐽 ) ‘ ( 𝑋  ∖  𝑚 ) ) ) ) | 
						
							| 92 | 88 91 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑚  ∈  𝑈  ∧  𝑦  ∈  𝑚 ) )  →  ( ( 𝑤  ∈  𝑋  ↦  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑚 )  ↦  ( 𝑤 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) ) ‘ 𝑦 )  ≠  0 ) | 
						
							| 93 | 67 76 92 | ne0gt0d | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑚  ∈  𝑈  ∧  𝑦  ∈  𝑚 ) )  →  0  <  ( ( 𝑤  ∈  𝑋  ↦  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑚 )  ↦  ( 𝑤 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) ) ‘ 𝑦 ) ) | 
						
							| 94 | 93 47 | breqtrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑚  ∈  𝑈  ∧  𝑦  ∈  𝑚 ) )  →  0  <  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑚 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 95 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑚  ∈  𝑈  ∧  𝑦  ∈  𝑚 ) )  →  𝑈  ∈  Fin ) | 
						
							| 96 | 37 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑚  ∈  𝑈  ∧  𝑦  ∈  𝑚 ) )  ∧  𝑘  ∈  𝑈 )  →  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑘 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  )  ∈  ℝ ) | 
						
							| 97 | 17 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  𝑘  ∈  𝑈 )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 98 | 30 | metdsf | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  ( 𝑋  ∖  𝑘 )  ⊆  𝑋 )  →  ( 𝑦  ∈  𝑋  ↦  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑘 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) ) : 𝑋 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 99 | 97 11 98 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  𝑘  ∈  𝑈 )  →  ( 𝑦  ∈  𝑋  ↦  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑘 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) ) : 𝑋 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 100 | 30 | fmpt | ⊢ ( ∀ 𝑦  ∈  𝑋 inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑘 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  )  ∈  ( 0 [,] +∞ )  ↔  ( 𝑦  ∈  𝑋  ↦  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑘 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) ) : 𝑋 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 101 | 99 100 | sylibr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  𝑘  ∈  𝑈 )  →  ∀ 𝑦  ∈  𝑋 inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑘 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 102 |  | rsp | ⊢ ( ∀ 𝑦  ∈  𝑋 inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑘 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  )  ∈  ( 0 [,] +∞ )  →  ( 𝑦  ∈  𝑋  →  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑘 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  )  ∈  ( 0 [,] +∞ ) ) ) | 
						
							| 103 | 101 35 102 | sylc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  𝑘  ∈  𝑈 )  →  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑘 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 104 |  | elxrge0 | ⊢ ( inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑘 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  )  ∈  ( 0 [,] +∞ )  ↔  ( inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑘 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  )  ∈  ℝ*  ∧  0  ≤  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑘 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) ) ) | 
						
							| 105 | 103 104 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  𝑘  ∈  𝑈 )  →  ( inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑘 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  )  ∈  ℝ*  ∧  0  ≤  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑘 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) ) ) | 
						
							| 106 | 105 | simprd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  𝑘  ∈  𝑈 )  →  0  ≤  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑘 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 107 | 106 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑚  ∈  𝑈  ∧  𝑦  ∈  𝑚 ) )  ∧  𝑘  ∈  𝑈 )  →  0  ≤  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑘 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 108 |  | difeq2 | ⊢ ( 𝑘  =  𝑚  →  ( 𝑋  ∖  𝑘 )  =  ( 𝑋  ∖  𝑚 ) ) | 
						
							| 109 | 108 | mpteq1d | ⊢ ( 𝑘  =  𝑚  →  ( 𝑧  ∈  ( 𝑋  ∖  𝑘 )  ↦  ( 𝑦 𝐷 𝑧 ) )  =  ( 𝑧  ∈  ( 𝑋  ∖  𝑚 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ) | 
						
							| 110 | 109 | rneqd | ⊢ ( 𝑘  =  𝑚  →  ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑘 )  ↦  ( 𝑦 𝐷 𝑧 ) )  =  ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑚 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ) | 
						
							| 111 | 110 | infeq1d | ⊢ ( 𝑘  =  𝑚  →  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑘 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  )  =  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑚 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 112 | 95 96 107 111 51 | fsumge1 | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑚  ∈  𝑈  ∧  𝑦  ∈  𝑚 ) )  →  inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑚 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  )  ≤  Σ 𝑘  ∈  𝑈 inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑘 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 113 | 43 68 69 94 112 | ltletrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑚  ∈  𝑈  ∧  𝑦  ∈  𝑚 ) )  →  0  <  Σ 𝑘  ∈  𝑈 inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑘 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 114 | 42 113 | rexlimddv | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  0  <  Σ 𝑘  ∈  𝑈 inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑘 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 115 | 38 114 | elrpd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  Σ 𝑘  ∈  𝑈 inf ( ran  ( 𝑧  ∈  ( 𝑋  ∖  𝑘 )  ↦  ( 𝑦 𝐷 𝑧 ) ) ,  ℝ* ,   <  )  ∈  ℝ+ ) | 
						
							| 116 | 115 8 | fmptd | ⊢ ( 𝜑  →  𝐹 : 𝑋 ⟶ ℝ+ ) |