Metamath Proof Explorer


Theorem lebnumlem1

Description: Lemma for lebnum . The function F measures the sum of all of the distances to escape the sets of the cover. Since by assumption it is a cover, there is at least one set which covers a given point, and since it is open, the point is a positive distance from the edge of the set. Thus, the sum is a strictly positive number. (Contributed by Mario Carneiro, 14-Feb-2015) (Revised by AV, 30-Sep-2020)

Ref Expression
Hypotheses lebnum.j 𝐽 = ( MetOpen ‘ 𝐷 )
lebnum.d ( 𝜑𝐷 ∈ ( Met ‘ 𝑋 ) )
lebnum.c ( 𝜑𝐽 ∈ Comp )
lebnum.s ( 𝜑𝑈𝐽 )
lebnum.u ( 𝜑𝑋 = 𝑈 )
lebnumlem1.u ( 𝜑𝑈 ∈ Fin )
lebnumlem1.n ( 𝜑 → ¬ 𝑋𝑈 )
lebnumlem1.f 𝐹 = ( 𝑦𝑋 ↦ Σ 𝑘𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) )
Assertion lebnumlem1 ( 𝜑𝐹 : 𝑋 ⟶ ℝ+ )

Proof

Step Hyp Ref Expression
1 lebnum.j 𝐽 = ( MetOpen ‘ 𝐷 )
2 lebnum.d ( 𝜑𝐷 ∈ ( Met ‘ 𝑋 ) )
3 lebnum.c ( 𝜑𝐽 ∈ Comp )
4 lebnum.s ( 𝜑𝑈𝐽 )
5 lebnum.u ( 𝜑𝑋 = 𝑈 )
6 lebnumlem1.u ( 𝜑𝑈 ∈ Fin )
7 lebnumlem1.n ( 𝜑 → ¬ 𝑋𝑈 )
8 lebnumlem1.f 𝐹 = ( 𝑦𝑋 ↦ Σ 𝑘𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) )
9 6 adantr ( ( 𝜑𝑦𝑋 ) → 𝑈 ∈ Fin )
10 2 ad2antrr ( ( ( 𝜑𝑦𝑋 ) ∧ 𝑘𝑈 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) )
11 difssd ( ( ( 𝜑𝑦𝑋 ) ∧ 𝑘𝑈 ) → ( 𝑋𝑘 ) ⊆ 𝑋 )
12 4 adantr ( ( 𝜑𝑦𝑋 ) → 𝑈𝐽 )
13 12 sselda ( ( ( 𝜑𝑦𝑋 ) ∧ 𝑘𝑈 ) → 𝑘𝐽 )
14 elssuni ( 𝑘𝐽𝑘 𝐽 )
15 13 14 syl ( ( ( 𝜑𝑦𝑋 ) ∧ 𝑘𝑈 ) → 𝑘 𝐽 )
16 metxmet ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
17 2 16 syl ( 𝜑𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
18 1 mopnuni ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = 𝐽 )
19 17 18 syl ( 𝜑𝑋 = 𝐽 )
20 19 ad2antrr ( ( ( 𝜑𝑦𝑋 ) ∧ 𝑘𝑈 ) → 𝑋 = 𝐽 )
21 15 20 sseqtrrd ( ( ( 𝜑𝑦𝑋 ) ∧ 𝑘𝑈 ) → 𝑘𝑋 )
22 eleq1 ( 𝑘 = 𝑋 → ( 𝑘𝑈𝑋𝑈 ) )
23 22 notbid ( 𝑘 = 𝑋 → ( ¬ 𝑘𝑈 ↔ ¬ 𝑋𝑈 ) )
24 7 23 syl5ibrcom ( 𝜑 → ( 𝑘 = 𝑋 → ¬ 𝑘𝑈 ) )
25 24 necon2ad ( 𝜑 → ( 𝑘𝑈𝑘𝑋 ) )
26 25 adantr ( ( 𝜑𝑦𝑋 ) → ( 𝑘𝑈𝑘𝑋 ) )
27 26 imp ( ( ( 𝜑𝑦𝑋 ) ∧ 𝑘𝑈 ) → 𝑘𝑋 )
28 pssdifn0 ( ( 𝑘𝑋𝑘𝑋 ) → ( 𝑋𝑘 ) ≠ ∅ )
29 21 27 28 syl2anc ( ( ( 𝜑𝑦𝑋 ) ∧ 𝑘𝑈 ) → ( 𝑋𝑘 ) ≠ ∅ )
30 eqid ( 𝑦𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) = ( 𝑦𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) )
31 30 metdsre ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑋𝑘 ) ⊆ 𝑋 ∧ ( 𝑋𝑘 ) ≠ ∅ ) → ( 𝑦𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) : 𝑋 ⟶ ℝ )
32 10 11 29 31 syl3anc ( ( ( 𝜑𝑦𝑋 ) ∧ 𝑘𝑈 ) → ( 𝑦𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) : 𝑋 ⟶ ℝ )
33 30 fmpt ( ∀ 𝑦𝑋 inf ( ran ( 𝑧 ∈ ( 𝑋𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ℝ ↔ ( 𝑦𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) : 𝑋 ⟶ ℝ )
34 32 33 sylibr ( ( ( 𝜑𝑦𝑋 ) ∧ 𝑘𝑈 ) → ∀ 𝑦𝑋 inf ( ran ( 𝑧 ∈ ( 𝑋𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ℝ )
35 simplr ( ( ( 𝜑𝑦𝑋 ) ∧ 𝑘𝑈 ) → 𝑦𝑋 )
36 rsp ( ∀ 𝑦𝑋 inf ( ran ( 𝑧 ∈ ( 𝑋𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ℝ → ( 𝑦𝑋 → inf ( ran ( 𝑧 ∈ ( 𝑋𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ℝ ) )
37 34 35 36 sylc ( ( ( 𝜑𝑦𝑋 ) ∧ 𝑘𝑈 ) → inf ( ran ( 𝑧 ∈ ( 𝑋𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ℝ )
38 9 37 fsumrecl ( ( 𝜑𝑦𝑋 ) → Σ 𝑘𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ℝ )
39 5 eleq2d ( 𝜑 → ( 𝑦𝑋𝑦 𝑈 ) )
40 39 biimpa ( ( 𝜑𝑦𝑋 ) → 𝑦 𝑈 )
41 eluni2 ( 𝑦 𝑈 ↔ ∃ 𝑚𝑈 𝑦𝑚 )
42 40 41 sylib ( ( 𝜑𝑦𝑋 ) → ∃ 𝑚𝑈 𝑦𝑚 )
43 0red ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑚𝑈𝑦𝑚 ) ) → 0 ∈ ℝ )
44 simplr ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑚𝑈𝑦𝑚 ) ) → 𝑦𝑋 )
45 eqid ( 𝑤𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) = ( 𝑤𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) )
46 45 metdsval ( 𝑦𝑋 → ( ( 𝑤𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑦 ) = inf ( ran ( 𝑧 ∈ ( 𝑋𝑚 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) )
47 44 46 syl ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑚𝑈𝑦𝑚 ) ) → ( ( 𝑤𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑦 ) = inf ( ran ( 𝑧 ∈ ( 𝑋𝑚 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) )
48 2 ad2antrr ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑚𝑈𝑦𝑚 ) ) → 𝐷 ∈ ( Met ‘ 𝑋 ) )
49 difssd ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑚𝑈𝑦𝑚 ) ) → ( 𝑋𝑚 ) ⊆ 𝑋 )
50 4 ad2antrr ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑚𝑈𝑦𝑚 ) ) → 𝑈𝐽 )
51 simprl ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑚𝑈𝑦𝑚 ) ) → 𝑚𝑈 )
52 50 51 sseldd ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑚𝑈𝑦𝑚 ) ) → 𝑚𝐽 )
53 elssuni ( 𝑚𝐽𝑚 𝐽 )
54 52 53 syl ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑚𝑈𝑦𝑚 ) ) → 𝑚 𝐽 )
55 48 16 18 3syl ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑚𝑈𝑦𝑚 ) ) → 𝑋 = 𝐽 )
56 54 55 sseqtrrd ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑚𝑈𝑦𝑚 ) ) → 𝑚𝑋 )
57 eleq1 ( 𝑚 = 𝑋 → ( 𝑚𝑈𝑋𝑈 ) )
58 57 notbid ( 𝑚 = 𝑋 → ( ¬ 𝑚𝑈 ↔ ¬ 𝑋𝑈 ) )
59 7 58 syl5ibrcom ( 𝜑 → ( 𝑚 = 𝑋 → ¬ 𝑚𝑈 ) )
60 59 necon2ad ( 𝜑 → ( 𝑚𝑈𝑚𝑋 ) )
61 60 ad2antrr ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑚𝑈𝑦𝑚 ) ) → ( 𝑚𝑈𝑚𝑋 ) )
62 51 61 mpd ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑚𝑈𝑦𝑚 ) ) → 𝑚𝑋 )
63 pssdifn0 ( ( 𝑚𝑋𝑚𝑋 ) → ( 𝑋𝑚 ) ≠ ∅ )
64 56 62 63 syl2anc ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑚𝑈𝑦𝑚 ) ) → ( 𝑋𝑚 ) ≠ ∅ )
65 45 metdsre ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑋𝑚 ) ⊆ 𝑋 ∧ ( 𝑋𝑚 ) ≠ ∅ ) → ( 𝑤𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) : 𝑋 ⟶ ℝ )
66 48 49 64 65 syl3anc ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑚𝑈𝑦𝑚 ) ) → ( 𝑤𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) : 𝑋 ⟶ ℝ )
67 66 44 ffvelrnd ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑚𝑈𝑦𝑚 ) ) → ( ( 𝑤𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑦 ) ∈ ℝ )
68 47 67 eqeltrrd ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑚𝑈𝑦𝑚 ) ) → inf ( ran ( 𝑧 ∈ ( 𝑋𝑚 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ℝ )
69 38 adantr ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑚𝑈𝑦𝑚 ) ) → Σ 𝑘𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ℝ )
70 17 ad2antrr ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑚𝑈𝑦𝑚 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
71 45 metdsf ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑋𝑚 ) ⊆ 𝑋 ) → ( 𝑤𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) : 𝑋 ⟶ ( 0 [,] +∞ ) )
72 70 49 71 syl2anc ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑚𝑈𝑦𝑚 ) ) → ( 𝑤𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) : 𝑋 ⟶ ( 0 [,] +∞ ) )
73 72 44 ffvelrnd ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑚𝑈𝑦𝑚 ) ) → ( ( 𝑤𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) )
74 elxrge0 ( ( ( 𝑤𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ↔ ( ( ( 𝑤𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑦 ) ∈ ℝ* ∧ 0 ≤ ( ( 𝑤𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑦 ) ) )
75 73 74 sylib ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑚𝑈𝑦𝑚 ) ) → ( ( ( 𝑤𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑦 ) ∈ ℝ* ∧ 0 ≤ ( ( 𝑤𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑦 ) ) )
76 75 simprd ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑚𝑈𝑦𝑚 ) ) → 0 ≤ ( ( 𝑤𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑦 ) )
77 elndif ( 𝑦𝑚 → ¬ 𝑦 ∈ ( 𝑋𝑚 ) )
78 77 ad2antll ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑚𝑈𝑦𝑚 ) ) → ¬ 𝑦 ∈ ( 𝑋𝑚 ) )
79 55 difeq1d ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑚𝑈𝑦𝑚 ) ) → ( 𝑋𝑚 ) = ( 𝐽𝑚 ) )
80 1 mopntop ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top )
81 70 80 syl ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑚𝑈𝑦𝑚 ) ) → 𝐽 ∈ Top )
82 eqid 𝐽 = 𝐽
83 82 opncld ( ( 𝐽 ∈ Top ∧ 𝑚𝐽 ) → ( 𝐽𝑚 ) ∈ ( Clsd ‘ 𝐽 ) )
84 81 52 83 syl2anc ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑚𝑈𝑦𝑚 ) ) → ( 𝐽𝑚 ) ∈ ( Clsd ‘ 𝐽 ) )
85 79 84 eqeltrd ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑚𝑈𝑦𝑚 ) ) → ( 𝑋𝑚 ) ∈ ( Clsd ‘ 𝐽 ) )
86 cldcls ( ( 𝑋𝑚 ) ∈ ( Clsd ‘ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑋𝑚 ) ) = ( 𝑋𝑚 ) )
87 85 86 syl ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑚𝑈𝑦𝑚 ) ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑋𝑚 ) ) = ( 𝑋𝑚 ) )
88 78 87 neleqtrrd ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑚𝑈𝑦𝑚 ) ) → ¬ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋𝑚 ) ) )
89 45 1 metdseq0 ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑋𝑚 ) ⊆ 𝑋𝑦𝑋 ) → ( ( ( 𝑤𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑦 ) = 0 ↔ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋𝑚 ) ) ) )
90 70 49 44 89 syl3anc ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑚𝑈𝑦𝑚 ) ) → ( ( ( 𝑤𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑦 ) = 0 ↔ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋𝑚 ) ) ) )
91 90 necon3abid ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑚𝑈𝑦𝑚 ) ) → ( ( ( 𝑤𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑦 ) ≠ 0 ↔ ¬ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋𝑚 ) ) ) )
92 88 91 mpbird ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑚𝑈𝑦𝑚 ) ) → ( ( 𝑤𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑦 ) ≠ 0 )
93 67 76 92 ne0gt0d ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑚𝑈𝑦𝑚 ) ) → 0 < ( ( 𝑤𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑦 ) )
94 93 47 breqtrd ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑚𝑈𝑦𝑚 ) ) → 0 < inf ( ran ( 𝑧 ∈ ( 𝑋𝑚 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) )
95 6 ad2antrr ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑚𝑈𝑦𝑚 ) ) → 𝑈 ∈ Fin )
96 37 adantlr ( ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑚𝑈𝑦𝑚 ) ) ∧ 𝑘𝑈 ) → inf ( ran ( 𝑧 ∈ ( 𝑋𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ℝ )
97 17 ad2antrr ( ( ( 𝜑𝑦𝑋 ) ∧ 𝑘𝑈 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
98 30 metdsf ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑋𝑘 ) ⊆ 𝑋 ) → ( 𝑦𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) : 𝑋 ⟶ ( 0 [,] +∞ ) )
99 97 11 98 syl2anc ( ( ( 𝜑𝑦𝑋 ) ∧ 𝑘𝑈 ) → ( 𝑦𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) : 𝑋 ⟶ ( 0 [,] +∞ ) )
100 30 fmpt ( ∀ 𝑦𝑋 inf ( ran ( 𝑧 ∈ ( 𝑋𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ( 0 [,] +∞ ) ↔ ( 𝑦𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) : 𝑋 ⟶ ( 0 [,] +∞ ) )
101 99 100 sylibr ( ( ( 𝜑𝑦𝑋 ) ∧ 𝑘𝑈 ) → ∀ 𝑦𝑋 inf ( ran ( 𝑧 ∈ ( 𝑋𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ( 0 [,] +∞ ) )
102 rsp ( ∀ 𝑦𝑋 inf ( ran ( 𝑧 ∈ ( 𝑋𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ( 0 [,] +∞ ) → ( 𝑦𝑋 → inf ( ran ( 𝑧 ∈ ( 𝑋𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ( 0 [,] +∞ ) ) )
103 101 35 102 sylc ( ( ( 𝜑𝑦𝑋 ) ∧ 𝑘𝑈 ) → inf ( ran ( 𝑧 ∈ ( 𝑋𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ( 0 [,] +∞ ) )
104 elxrge0 ( inf ( ran ( 𝑧 ∈ ( 𝑋𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ( 0 [,] +∞ ) ↔ ( inf ( ran ( 𝑧 ∈ ( 𝑋𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ℝ* ∧ 0 ≤ inf ( ran ( 𝑧 ∈ ( 𝑋𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) )
105 103 104 sylib ( ( ( 𝜑𝑦𝑋 ) ∧ 𝑘𝑈 ) → ( inf ( ran ( 𝑧 ∈ ( 𝑋𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ℝ* ∧ 0 ≤ inf ( ran ( 𝑧 ∈ ( 𝑋𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) )
106 105 simprd ( ( ( 𝜑𝑦𝑋 ) ∧ 𝑘𝑈 ) → 0 ≤ inf ( ran ( 𝑧 ∈ ( 𝑋𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) )
107 106 adantlr ( ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑚𝑈𝑦𝑚 ) ) ∧ 𝑘𝑈 ) → 0 ≤ inf ( ran ( 𝑧 ∈ ( 𝑋𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) )
108 difeq2 ( 𝑘 = 𝑚 → ( 𝑋𝑘 ) = ( 𝑋𝑚 ) )
109 108 mpteq1d ( 𝑘 = 𝑚 → ( 𝑧 ∈ ( 𝑋𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) = ( 𝑧 ∈ ( 𝑋𝑚 ) ↦ ( 𝑦 𝐷 𝑧 ) ) )
110 109 rneqd ( 𝑘 = 𝑚 → ran ( 𝑧 ∈ ( 𝑋𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) = ran ( 𝑧 ∈ ( 𝑋𝑚 ) ↦ ( 𝑦 𝐷 𝑧 ) ) )
111 110 infeq1d ( 𝑘 = 𝑚 → inf ( ran ( 𝑧 ∈ ( 𝑋𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) = inf ( ran ( 𝑧 ∈ ( 𝑋𝑚 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) )
112 95 96 107 111 51 fsumge1 ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑚𝑈𝑦𝑚 ) ) → inf ( ran ( 𝑧 ∈ ( 𝑋𝑚 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ≤ Σ 𝑘𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) )
113 43 68 69 94 112 ltletrd ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑚𝑈𝑦𝑚 ) ) → 0 < Σ 𝑘𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) )
114 42 113 rexlimddv ( ( 𝜑𝑦𝑋 ) → 0 < Σ 𝑘𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) )
115 38 114 elrpd ( ( 𝜑𝑦𝑋 ) → Σ 𝑘𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ℝ+ )
116 115 8 fmptd ( 𝜑𝐹 : 𝑋 ⟶ ℝ+ )