| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lebnum.j |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
| 2 |
|
lebnum.d |
⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 3 |
|
lebnum.c |
⊢ ( 𝜑 → 𝐽 ∈ Comp ) |
| 4 |
|
lebnum.s |
⊢ ( 𝜑 → 𝑈 ⊆ 𝐽 ) |
| 5 |
|
lebnum.u |
⊢ ( 𝜑 → 𝑋 = ∪ 𝑈 ) |
| 6 |
|
lebnumlem1.u |
⊢ ( 𝜑 → 𝑈 ∈ Fin ) |
| 7 |
|
lebnumlem1.n |
⊢ ( 𝜑 → ¬ 𝑋 ∈ 𝑈 ) |
| 8 |
|
lebnumlem1.f |
⊢ 𝐹 = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) |
| 9 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → 𝑈 ∈ Fin ) |
| 10 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑈 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 11 |
|
difssd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑈 ) → ( 𝑋 ∖ 𝑘 ) ⊆ 𝑋 ) |
| 12 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → 𝑈 ⊆ 𝐽 ) |
| 13 |
12
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑈 ) → 𝑘 ∈ 𝐽 ) |
| 14 |
|
elssuni |
⊢ ( 𝑘 ∈ 𝐽 → 𝑘 ⊆ ∪ 𝐽 ) |
| 15 |
13 14
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑈 ) → 𝑘 ⊆ ∪ 𝐽 ) |
| 16 |
|
metxmet |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 17 |
2 16
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 18 |
1
|
mopnuni |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 19 |
17 18
|
syl |
⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
| 20 |
19
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑈 ) → 𝑋 = ∪ 𝐽 ) |
| 21 |
15 20
|
sseqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑈 ) → 𝑘 ⊆ 𝑋 ) |
| 22 |
|
eleq1 |
⊢ ( 𝑘 = 𝑋 → ( 𝑘 ∈ 𝑈 ↔ 𝑋 ∈ 𝑈 ) ) |
| 23 |
22
|
notbid |
⊢ ( 𝑘 = 𝑋 → ( ¬ 𝑘 ∈ 𝑈 ↔ ¬ 𝑋 ∈ 𝑈 ) ) |
| 24 |
7 23
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑘 = 𝑋 → ¬ 𝑘 ∈ 𝑈 ) ) |
| 25 |
24
|
necon2ad |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑈 → 𝑘 ≠ 𝑋 ) ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑘 ∈ 𝑈 → 𝑘 ≠ 𝑋 ) ) |
| 27 |
26
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑈 ) → 𝑘 ≠ 𝑋 ) |
| 28 |
|
pssdifn0 |
⊢ ( ( 𝑘 ⊆ 𝑋 ∧ 𝑘 ≠ 𝑋 ) → ( 𝑋 ∖ 𝑘 ) ≠ ∅ ) |
| 29 |
21 27 28
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑈 ) → ( 𝑋 ∖ 𝑘 ) ≠ ∅ ) |
| 30 |
|
eqid |
⊢ ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) = ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) |
| 31 |
30
|
metdsre |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑋 ∖ 𝑘 ) ⊆ 𝑋 ∧ ( 𝑋 ∖ 𝑘 ) ≠ ∅ ) → ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) : 𝑋 ⟶ ℝ ) |
| 32 |
10 11 29 31
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑈 ) → ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) : 𝑋 ⟶ ℝ ) |
| 33 |
30
|
fmpt |
⊢ ( ∀ 𝑦 ∈ 𝑋 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ℝ ↔ ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) : 𝑋 ⟶ ℝ ) |
| 34 |
32 33
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑈 ) → ∀ 𝑦 ∈ 𝑋 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ℝ ) |
| 35 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑈 ) → 𝑦 ∈ 𝑋 ) |
| 36 |
|
rsp |
⊢ ( ∀ 𝑦 ∈ 𝑋 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ℝ → ( 𝑦 ∈ 𝑋 → inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ℝ ) ) |
| 37 |
34 35 36
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑈 ) → inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ℝ ) |
| 38 |
9 37
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → Σ 𝑘 ∈ 𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ℝ ) |
| 39 |
5
|
eleq2d |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑋 ↔ 𝑦 ∈ ∪ 𝑈 ) ) |
| 40 |
39
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → 𝑦 ∈ ∪ 𝑈 ) |
| 41 |
|
eluni2 |
⊢ ( 𝑦 ∈ ∪ 𝑈 ↔ ∃ 𝑚 ∈ 𝑈 𝑦 ∈ 𝑚 ) |
| 42 |
40 41
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ∃ 𝑚 ∈ 𝑈 𝑦 ∈ 𝑚 ) |
| 43 |
|
0red |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → 0 ∈ ℝ ) |
| 44 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → 𝑦 ∈ 𝑋 ) |
| 45 |
|
eqid |
⊢ ( 𝑤 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) = ( 𝑤 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) |
| 46 |
45
|
metdsval |
⊢ ( 𝑦 ∈ 𝑋 → ( ( 𝑤 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑦 ) = inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) |
| 47 |
44 46
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → ( ( 𝑤 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑦 ) = inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) |
| 48 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 49 |
|
difssd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → ( 𝑋 ∖ 𝑚 ) ⊆ 𝑋 ) |
| 50 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → 𝑈 ⊆ 𝐽 ) |
| 51 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → 𝑚 ∈ 𝑈 ) |
| 52 |
50 51
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → 𝑚 ∈ 𝐽 ) |
| 53 |
|
elssuni |
⊢ ( 𝑚 ∈ 𝐽 → 𝑚 ⊆ ∪ 𝐽 ) |
| 54 |
52 53
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → 𝑚 ⊆ ∪ 𝐽 ) |
| 55 |
48 16 18
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → 𝑋 = ∪ 𝐽 ) |
| 56 |
54 55
|
sseqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → 𝑚 ⊆ 𝑋 ) |
| 57 |
|
eleq1 |
⊢ ( 𝑚 = 𝑋 → ( 𝑚 ∈ 𝑈 ↔ 𝑋 ∈ 𝑈 ) ) |
| 58 |
57
|
notbid |
⊢ ( 𝑚 = 𝑋 → ( ¬ 𝑚 ∈ 𝑈 ↔ ¬ 𝑋 ∈ 𝑈 ) ) |
| 59 |
7 58
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑚 = 𝑋 → ¬ 𝑚 ∈ 𝑈 ) ) |
| 60 |
59
|
necon2ad |
⊢ ( 𝜑 → ( 𝑚 ∈ 𝑈 → 𝑚 ≠ 𝑋 ) ) |
| 61 |
60
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → ( 𝑚 ∈ 𝑈 → 𝑚 ≠ 𝑋 ) ) |
| 62 |
51 61
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → 𝑚 ≠ 𝑋 ) |
| 63 |
|
pssdifn0 |
⊢ ( ( 𝑚 ⊆ 𝑋 ∧ 𝑚 ≠ 𝑋 ) → ( 𝑋 ∖ 𝑚 ) ≠ ∅ ) |
| 64 |
56 62 63
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → ( 𝑋 ∖ 𝑚 ) ≠ ∅ ) |
| 65 |
45
|
metdsre |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑋 ∖ 𝑚 ) ⊆ 𝑋 ∧ ( 𝑋 ∖ 𝑚 ) ≠ ∅ ) → ( 𝑤 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) : 𝑋 ⟶ ℝ ) |
| 66 |
48 49 64 65
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → ( 𝑤 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) : 𝑋 ⟶ ℝ ) |
| 67 |
66 44
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → ( ( 𝑤 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑦 ) ∈ ℝ ) |
| 68 |
47 67
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ℝ ) |
| 69 |
38
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → Σ 𝑘 ∈ 𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ℝ ) |
| 70 |
17
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 71 |
45
|
metdsf |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑋 ∖ 𝑚 ) ⊆ 𝑋 ) → ( 𝑤 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 72 |
70 49 71
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → ( 𝑤 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 73 |
72 44
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → ( ( 𝑤 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
| 74 |
|
elxrge0 |
⊢ ( ( ( 𝑤 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ↔ ( ( ( 𝑤 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑦 ) ∈ ℝ* ∧ 0 ≤ ( ( 𝑤 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑦 ) ) ) |
| 75 |
73 74
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → ( ( ( 𝑤 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑦 ) ∈ ℝ* ∧ 0 ≤ ( ( 𝑤 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑦 ) ) ) |
| 76 |
75
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → 0 ≤ ( ( 𝑤 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑦 ) ) |
| 77 |
|
elndif |
⊢ ( 𝑦 ∈ 𝑚 → ¬ 𝑦 ∈ ( 𝑋 ∖ 𝑚 ) ) |
| 78 |
77
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → ¬ 𝑦 ∈ ( 𝑋 ∖ 𝑚 ) ) |
| 79 |
55
|
difeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → ( 𝑋 ∖ 𝑚 ) = ( ∪ 𝐽 ∖ 𝑚 ) ) |
| 80 |
1
|
mopntop |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 81 |
70 80
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → 𝐽 ∈ Top ) |
| 82 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 83 |
82
|
opncld |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑚 ∈ 𝐽 ) → ( ∪ 𝐽 ∖ 𝑚 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 84 |
81 52 83
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → ( ∪ 𝐽 ∖ 𝑚 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 85 |
79 84
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → ( 𝑋 ∖ 𝑚 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 86 |
|
cldcls |
⊢ ( ( 𝑋 ∖ 𝑚 ) ∈ ( Clsd ‘ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑚 ) ) = ( 𝑋 ∖ 𝑚 ) ) |
| 87 |
85 86
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑚 ) ) = ( 𝑋 ∖ 𝑚 ) ) |
| 88 |
78 87
|
neleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → ¬ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑚 ) ) ) |
| 89 |
45 1
|
metdseq0 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑋 ∖ 𝑚 ) ⊆ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑤 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑦 ) = 0 ↔ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑚 ) ) ) ) |
| 90 |
70 49 44 89
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → ( ( ( 𝑤 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑦 ) = 0 ↔ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑚 ) ) ) ) |
| 91 |
90
|
necon3abid |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → ( ( ( 𝑤 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑦 ) ≠ 0 ↔ ¬ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑚 ) ) ) ) |
| 92 |
88 91
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → ( ( 𝑤 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑦 ) ≠ 0 ) |
| 93 |
67 76 92
|
ne0gt0d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → 0 < ( ( 𝑤 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑦 ) ) |
| 94 |
93 47
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → 0 < inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) |
| 95 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → 𝑈 ∈ Fin ) |
| 96 |
37
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) ∧ 𝑘 ∈ 𝑈 ) → inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ℝ ) |
| 97 |
17
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑈 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 98 |
30
|
metdsf |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑋 ∖ 𝑘 ) ⊆ 𝑋 ) → ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 99 |
97 11 98
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑈 ) → ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 100 |
30
|
fmpt |
⊢ ( ∀ 𝑦 ∈ 𝑋 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ( 0 [,] +∞ ) ↔ ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 101 |
99 100
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑈 ) → ∀ 𝑦 ∈ 𝑋 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ( 0 [,] +∞ ) ) |
| 102 |
|
rsp |
⊢ ( ∀ 𝑦 ∈ 𝑋 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ( 0 [,] +∞ ) → ( 𝑦 ∈ 𝑋 → inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ( 0 [,] +∞ ) ) ) |
| 103 |
101 35 102
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑈 ) → inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ( 0 [,] +∞ ) ) |
| 104 |
|
elxrge0 |
⊢ ( inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ( 0 [,] +∞ ) ↔ ( inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ℝ* ∧ 0 ≤ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) ) |
| 105 |
103 104
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑈 ) → ( inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ℝ* ∧ 0 ≤ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) ) |
| 106 |
105
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑈 ) → 0 ≤ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) |
| 107 |
106
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) ∧ 𝑘 ∈ 𝑈 ) → 0 ≤ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) |
| 108 |
|
difeq2 |
⊢ ( 𝑘 = 𝑚 → ( 𝑋 ∖ 𝑘 ) = ( 𝑋 ∖ 𝑚 ) ) |
| 109 |
108
|
mpteq1d |
⊢ ( 𝑘 = 𝑚 → ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) = ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑦 𝐷 𝑧 ) ) ) |
| 110 |
109
|
rneqd |
⊢ ( 𝑘 = 𝑚 → ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) = ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑦 𝐷 𝑧 ) ) ) |
| 111 |
110
|
infeq1d |
⊢ ( 𝑘 = 𝑚 → inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) = inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) |
| 112 |
95 96 107 111 51
|
fsumge1 |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ≤ Σ 𝑘 ∈ 𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) |
| 113 |
43 68 69 94 112
|
ltletrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → 0 < Σ 𝑘 ∈ 𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) |
| 114 |
42 113
|
rexlimddv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → 0 < Σ 𝑘 ∈ 𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) |
| 115 |
38 114
|
elrpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → Σ 𝑘 ∈ 𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ℝ+ ) |
| 116 |
115 8
|
fmptd |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℝ+ ) |