| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lebnum.j |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
| 2 |
|
lebnum.d |
⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 3 |
|
lebnum.c |
⊢ ( 𝜑 → 𝐽 ∈ Comp ) |
| 4 |
|
lebnum.s |
⊢ ( 𝜑 → 𝑈 ⊆ 𝐽 ) |
| 5 |
|
lebnum.u |
⊢ ( 𝜑 → 𝑋 = ∪ 𝑈 ) |
| 6 |
|
lebnumlem1.u |
⊢ ( 𝜑 → 𝑈 ∈ Fin ) |
| 7 |
|
lebnumlem1.n |
⊢ ( 𝜑 → ¬ 𝑋 ∈ 𝑈 ) |
| 8 |
|
lebnumlem1.f |
⊢ 𝐹 = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) |
| 9 |
|
lebnumlem2.k |
⊢ 𝐾 = ( topGen ‘ ran (,) ) |
| 10 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 11 |
|
metxmet |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 12 |
2 11
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 13 |
1
|
mopntopon |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 14 |
12 13
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 15 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 16 |
|
difssd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → ( 𝑋 ∖ 𝑘 ) ⊆ 𝑋 ) |
| 17 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 18 |
17 13
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 19 |
4
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → 𝑘 ∈ 𝐽 ) |
| 20 |
|
toponss |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑘 ∈ 𝐽 ) → 𝑘 ⊆ 𝑋 ) |
| 21 |
18 19 20
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → 𝑘 ⊆ 𝑋 ) |
| 22 |
|
eleq1 |
⊢ ( 𝑘 = 𝑋 → ( 𝑘 ∈ 𝑈 ↔ 𝑋 ∈ 𝑈 ) ) |
| 23 |
22
|
notbid |
⊢ ( 𝑘 = 𝑋 → ( ¬ 𝑘 ∈ 𝑈 ↔ ¬ 𝑋 ∈ 𝑈 ) ) |
| 24 |
7 23
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑘 = 𝑋 → ¬ 𝑘 ∈ 𝑈 ) ) |
| 25 |
24
|
necon2ad |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑈 → 𝑘 ≠ 𝑋 ) ) |
| 26 |
25
|
imp |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → 𝑘 ≠ 𝑋 ) |
| 27 |
|
pssdifn0 |
⊢ ( ( 𝑘 ⊆ 𝑋 ∧ 𝑘 ≠ 𝑋 ) → ( 𝑋 ∖ 𝑘 ) ≠ ∅ ) |
| 28 |
21 26 27
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → ( 𝑋 ∖ 𝑘 ) ≠ ∅ ) |
| 29 |
|
eqid |
⊢ ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) = ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) |
| 30 |
29 1 10
|
metdscn2 |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑋 ∖ 𝑘 ) ⊆ 𝑋 ∧ ( 𝑋 ∖ 𝑘 ) ≠ ∅ ) → ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ) |
| 31 |
15 16 28 30
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ) |
| 32 |
10 14 6 31
|
fsumcn |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ) |
| 33 |
8 32
|
eqeltrid |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ) |
| 34 |
10
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 35 |
34
|
a1i |
⊢ ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
| 36 |
1 2 3 4 5 6 7 8
|
lebnumlem1 |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℝ+ ) |
| 37 |
36
|
frnd |
⊢ ( 𝜑 → ran 𝐹 ⊆ ℝ+ ) |
| 38 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
| 39 |
37 38
|
sstrdi |
⊢ ( 𝜑 → ran 𝐹 ⊆ ℝ ) |
| 40 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 41 |
40
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 42 |
|
cnrest2 |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ran 𝐹 ⊆ ℝ ∧ ℝ ⊆ ℂ ) → ( 𝐹 ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ↔ 𝐹 ∈ ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) ) |
| 43 |
35 39 41 42
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ↔ 𝐹 ∈ ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) ) |
| 44 |
33 43
|
mpbid |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) |
| 45 |
|
tgioo4 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 46 |
9 45
|
eqtri |
⊢ 𝐾 = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 47 |
46
|
oveq2i |
⊢ ( 𝐽 Cn 𝐾 ) = ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) |
| 48 |
44 47
|
eleqtrrdi |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |