Step |
Hyp |
Ref |
Expression |
1 |
|
lebnum.j |
β’ π½ = ( MetOpen β π· ) |
2 |
|
lebnum.d |
β’ ( π β π· β ( Met β π ) ) |
3 |
|
lebnum.c |
β’ ( π β π½ β Comp ) |
4 |
|
lebnum.s |
β’ ( π β π β π½ ) |
5 |
|
lebnum.u |
β’ ( π β π = βͺ π ) |
6 |
|
lebnumlem1.u |
β’ ( π β π β Fin ) |
7 |
|
lebnumlem1.n |
β’ ( π β Β¬ π β π ) |
8 |
|
lebnumlem1.f |
β’ πΉ = ( π¦ β π β¦ Ξ£ π β π inf ( ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) , β* , < ) ) |
9 |
|
lebnumlem2.k |
β’ πΎ = ( topGen β ran (,) ) |
10 |
|
eqid |
β’ ( TopOpen β βfld ) = ( TopOpen β βfld ) |
11 |
|
metxmet |
β’ ( π· β ( Met β π ) β π· β ( βMet β π ) ) |
12 |
2 11
|
syl |
β’ ( π β π· β ( βMet β π ) ) |
13 |
1
|
mopntopon |
β’ ( π· β ( βMet β π ) β π½ β ( TopOn β π ) ) |
14 |
12 13
|
syl |
β’ ( π β π½ β ( TopOn β π ) ) |
15 |
2
|
adantr |
β’ ( ( π β§ π β π ) β π· β ( Met β π ) ) |
16 |
|
difssd |
β’ ( ( π β§ π β π ) β ( π β π ) β π ) |
17 |
12
|
adantr |
β’ ( ( π β§ π β π ) β π· β ( βMet β π ) ) |
18 |
17 13
|
syl |
β’ ( ( π β§ π β π ) β π½ β ( TopOn β π ) ) |
19 |
4
|
sselda |
β’ ( ( π β§ π β π ) β π β π½ ) |
20 |
|
toponss |
β’ ( ( π½ β ( TopOn β π ) β§ π β π½ ) β π β π ) |
21 |
18 19 20
|
syl2anc |
β’ ( ( π β§ π β π ) β π β π ) |
22 |
|
eleq1 |
β’ ( π = π β ( π β π β π β π ) ) |
23 |
22
|
notbid |
β’ ( π = π β ( Β¬ π β π β Β¬ π β π ) ) |
24 |
7 23
|
syl5ibrcom |
β’ ( π β ( π = π β Β¬ π β π ) ) |
25 |
24
|
necon2ad |
β’ ( π β ( π β π β π β π ) ) |
26 |
25
|
imp |
β’ ( ( π β§ π β π ) β π β π ) |
27 |
|
pssdifn0 |
β’ ( ( π β π β§ π β π ) β ( π β π ) β β
) |
28 |
21 26 27
|
syl2anc |
β’ ( ( π β§ π β π ) β ( π β π ) β β
) |
29 |
|
eqid |
β’ ( π¦ β π β¦ inf ( ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) , β* , < ) ) = ( π¦ β π β¦ inf ( ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) , β* , < ) ) |
30 |
29 1 10
|
metdscn2 |
β’ ( ( π· β ( Met β π ) β§ ( π β π ) β π β§ ( π β π ) β β
) β ( π¦ β π β¦ inf ( ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) , β* , < ) ) β ( π½ Cn ( TopOpen β βfld ) ) ) |
31 |
15 16 28 30
|
syl3anc |
β’ ( ( π β§ π β π ) β ( π¦ β π β¦ inf ( ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) , β* , < ) ) β ( π½ Cn ( TopOpen β βfld ) ) ) |
32 |
10 14 6 31
|
fsumcn |
β’ ( π β ( π¦ β π β¦ Ξ£ π β π inf ( ran ( π§ β ( π β π ) β¦ ( π¦ π· π§ ) ) , β* , < ) ) β ( π½ Cn ( TopOpen β βfld ) ) ) |
33 |
8 32
|
eqeltrid |
β’ ( π β πΉ β ( π½ Cn ( TopOpen β βfld ) ) ) |
34 |
10
|
cnfldtopon |
β’ ( TopOpen β βfld ) β ( TopOn β β ) |
35 |
34
|
a1i |
β’ ( π β ( TopOpen β βfld ) β ( TopOn β β ) ) |
36 |
1 2 3 4 5 6 7 8
|
lebnumlem1 |
β’ ( π β πΉ : π βΆ β+ ) |
37 |
36
|
frnd |
β’ ( π β ran πΉ β β+ ) |
38 |
|
rpssre |
β’ β+ β β |
39 |
37 38
|
sstrdi |
β’ ( π β ran πΉ β β ) |
40 |
|
ax-resscn |
β’ β β β |
41 |
40
|
a1i |
β’ ( π β β β β ) |
42 |
|
cnrest2 |
β’ ( ( ( TopOpen β βfld ) β ( TopOn β β ) β§ ran πΉ β β β§ β β β ) β ( πΉ β ( π½ Cn ( TopOpen β βfld ) ) β πΉ β ( π½ Cn ( ( TopOpen β βfld ) βΎt β ) ) ) ) |
43 |
35 39 41 42
|
syl3anc |
β’ ( π β ( πΉ β ( π½ Cn ( TopOpen β βfld ) ) β πΉ β ( π½ Cn ( ( TopOpen β βfld ) βΎt β ) ) ) ) |
44 |
33 43
|
mpbid |
β’ ( π β πΉ β ( π½ Cn ( ( TopOpen β βfld ) βΎt β ) ) ) |
45 |
10
|
tgioo2 |
β’ ( topGen β ran (,) ) = ( ( TopOpen β βfld ) βΎt β ) |
46 |
9 45
|
eqtri |
β’ πΎ = ( ( TopOpen β βfld ) βΎt β ) |
47 |
46
|
oveq2i |
β’ ( π½ Cn πΎ ) = ( π½ Cn ( ( TopOpen β βfld ) βΎt β ) ) |
48 |
44 47
|
eleqtrrdi |
β’ ( π β πΉ β ( π½ Cn πΎ ) ) |