Metamath Proof Explorer


Theorem lebnumlem2

Description: Lemma for lebnum . As a finite sum of point-to-set distance functions, which are continuous by metdscn , the function F is also continuous. (Contributed by Mario Carneiro, 14-Feb-2015) (Revised by AV, 30-Sep-2020)

Ref Expression
Hypotheses lebnum.j 𝐽 = ( MetOpen ‘ 𝐷 )
lebnum.d ( 𝜑𝐷 ∈ ( Met ‘ 𝑋 ) )
lebnum.c ( 𝜑𝐽 ∈ Comp )
lebnum.s ( 𝜑𝑈𝐽 )
lebnum.u ( 𝜑𝑋 = 𝑈 )
lebnumlem1.u ( 𝜑𝑈 ∈ Fin )
lebnumlem1.n ( 𝜑 → ¬ 𝑋𝑈 )
lebnumlem1.f 𝐹 = ( 𝑦𝑋 ↦ Σ 𝑘𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) )
lebnumlem2.k 𝐾 = ( topGen ‘ ran (,) )
Assertion lebnumlem2 ( 𝜑𝐹 ∈ ( 𝐽 Cn 𝐾 ) )

Proof

Step Hyp Ref Expression
1 lebnum.j 𝐽 = ( MetOpen ‘ 𝐷 )
2 lebnum.d ( 𝜑𝐷 ∈ ( Met ‘ 𝑋 ) )
3 lebnum.c ( 𝜑𝐽 ∈ Comp )
4 lebnum.s ( 𝜑𝑈𝐽 )
5 lebnum.u ( 𝜑𝑋 = 𝑈 )
6 lebnumlem1.u ( 𝜑𝑈 ∈ Fin )
7 lebnumlem1.n ( 𝜑 → ¬ 𝑋𝑈 )
8 lebnumlem1.f 𝐹 = ( 𝑦𝑋 ↦ Σ 𝑘𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) )
9 lebnumlem2.k 𝐾 = ( topGen ‘ ran (,) )
10 eqid ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld )
11 metxmet ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
12 2 11 syl ( 𝜑𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
13 1 mopntopon ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) )
14 12 13 syl ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
15 2 adantr ( ( 𝜑𝑘𝑈 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) )
16 difssd ( ( 𝜑𝑘𝑈 ) → ( 𝑋𝑘 ) ⊆ 𝑋 )
17 12 adantr ( ( 𝜑𝑘𝑈 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
18 17 13 syl ( ( 𝜑𝑘𝑈 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) )
19 4 sselda ( ( 𝜑𝑘𝑈 ) → 𝑘𝐽 )
20 toponss ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑘𝐽 ) → 𝑘𝑋 )
21 18 19 20 syl2anc ( ( 𝜑𝑘𝑈 ) → 𝑘𝑋 )
22 eleq1 ( 𝑘 = 𝑋 → ( 𝑘𝑈𝑋𝑈 ) )
23 22 notbid ( 𝑘 = 𝑋 → ( ¬ 𝑘𝑈 ↔ ¬ 𝑋𝑈 ) )
24 7 23 syl5ibrcom ( 𝜑 → ( 𝑘 = 𝑋 → ¬ 𝑘𝑈 ) )
25 24 necon2ad ( 𝜑 → ( 𝑘𝑈𝑘𝑋 ) )
26 25 imp ( ( 𝜑𝑘𝑈 ) → 𝑘𝑋 )
27 pssdifn0 ( ( 𝑘𝑋𝑘𝑋 ) → ( 𝑋𝑘 ) ≠ ∅ )
28 21 26 27 syl2anc ( ( 𝜑𝑘𝑈 ) → ( 𝑋𝑘 ) ≠ ∅ )
29 eqid ( 𝑦𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) = ( 𝑦𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) )
30 29 1 10 metdscn2 ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑋𝑘 ) ⊆ 𝑋 ∧ ( 𝑋𝑘 ) ≠ ∅ ) → ( 𝑦𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) )
31 15 16 28 30 syl3anc ( ( 𝜑𝑘𝑈 ) → ( 𝑦𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) )
32 10 14 6 31 fsumcn ( 𝜑 → ( 𝑦𝑋 ↦ Σ 𝑘𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) )
33 8 32 eqeltrid ( 𝜑𝐹 ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) )
34 10 cnfldtopon ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ )
35 34 a1i ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) )
36 1 2 3 4 5 6 7 8 lebnumlem1 ( 𝜑𝐹 : 𝑋 ⟶ ℝ+ )
37 36 frnd ( 𝜑 → ran 𝐹 ⊆ ℝ+ )
38 rpssre + ⊆ ℝ
39 37 38 sstrdi ( 𝜑 → ran 𝐹 ⊆ ℝ )
40 ax-resscn ℝ ⊆ ℂ
41 40 a1i ( 𝜑 → ℝ ⊆ ℂ )
42 cnrest2 ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ran 𝐹 ⊆ ℝ ∧ ℝ ⊆ ℂ ) → ( 𝐹 ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ↔ 𝐹 ∈ ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) )
43 35 39 41 42 syl3anc ( 𝜑 → ( 𝐹 ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ↔ 𝐹 ∈ ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) )
44 33 43 mpbid ( 𝜑𝐹 ∈ ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) )
45 10 tgioo2 ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ )
46 9 45 eqtri 𝐾 = ( ( TopOpen ‘ ℂfld ) ↾t ℝ )
47 46 oveq2i ( 𝐽 Cn 𝐾 ) = ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) )
48 44 47 eleqtrrdi ( 𝜑𝐹 ∈ ( 𝐽 Cn 𝐾 ) )