Step |
Hyp |
Ref |
Expression |
1 |
|
lebnum.j |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
2 |
|
lebnum.d |
⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
3 |
|
lebnum.c |
⊢ ( 𝜑 → 𝐽 ∈ Comp ) |
4 |
|
lebnum.s |
⊢ ( 𝜑 → 𝑈 ⊆ 𝐽 ) |
5 |
|
lebnum.u |
⊢ ( 𝜑 → 𝑋 = ∪ 𝑈 ) |
6 |
|
lebnumlem1.u |
⊢ ( 𝜑 → 𝑈 ∈ Fin ) |
7 |
|
lebnumlem1.n |
⊢ ( 𝜑 → ¬ 𝑋 ∈ 𝑈 ) |
8 |
|
lebnumlem1.f |
⊢ 𝐹 = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) |
9 |
|
lebnumlem2.k |
⊢ 𝐾 = ( topGen ‘ ran (,) ) |
10 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
11 |
|
metxmet |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
12 |
2 11
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
13 |
1
|
mopntopon |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
14 |
12 13
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
15 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
16 |
|
difssd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → ( 𝑋 ∖ 𝑘 ) ⊆ 𝑋 ) |
17 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
18 |
17 13
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
19 |
4
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → 𝑘 ∈ 𝐽 ) |
20 |
|
toponss |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑘 ∈ 𝐽 ) → 𝑘 ⊆ 𝑋 ) |
21 |
18 19 20
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → 𝑘 ⊆ 𝑋 ) |
22 |
|
eleq1 |
⊢ ( 𝑘 = 𝑋 → ( 𝑘 ∈ 𝑈 ↔ 𝑋 ∈ 𝑈 ) ) |
23 |
22
|
notbid |
⊢ ( 𝑘 = 𝑋 → ( ¬ 𝑘 ∈ 𝑈 ↔ ¬ 𝑋 ∈ 𝑈 ) ) |
24 |
7 23
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑘 = 𝑋 → ¬ 𝑘 ∈ 𝑈 ) ) |
25 |
24
|
necon2ad |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑈 → 𝑘 ≠ 𝑋 ) ) |
26 |
25
|
imp |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → 𝑘 ≠ 𝑋 ) |
27 |
|
pssdifn0 |
⊢ ( ( 𝑘 ⊆ 𝑋 ∧ 𝑘 ≠ 𝑋 ) → ( 𝑋 ∖ 𝑘 ) ≠ ∅ ) |
28 |
21 26 27
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → ( 𝑋 ∖ 𝑘 ) ≠ ∅ ) |
29 |
|
eqid |
⊢ ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) = ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) |
30 |
29 1 10
|
metdscn2 |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑋 ∖ 𝑘 ) ⊆ 𝑋 ∧ ( 𝑋 ∖ 𝑘 ) ≠ ∅ ) → ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ) |
31 |
15 16 28 30
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ) |
32 |
10 14 6 31
|
fsumcn |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ) |
33 |
8 32
|
eqeltrid |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ) |
34 |
10
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
35 |
34
|
a1i |
⊢ ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
36 |
1 2 3 4 5 6 7 8
|
lebnumlem1 |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℝ+ ) |
37 |
36
|
frnd |
⊢ ( 𝜑 → ran 𝐹 ⊆ ℝ+ ) |
38 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
39 |
37 38
|
sstrdi |
⊢ ( 𝜑 → ran 𝐹 ⊆ ℝ ) |
40 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
41 |
40
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
42 |
|
cnrest2 |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ran 𝐹 ⊆ ℝ ∧ ℝ ⊆ ℂ ) → ( 𝐹 ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ↔ 𝐹 ∈ ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) ) |
43 |
35 39 41 42
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ↔ 𝐹 ∈ ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) ) |
44 |
33 43
|
mpbid |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) |
45 |
10
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
46 |
9 45
|
eqtri |
⊢ 𝐾 = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
47 |
46
|
oveq2i |
⊢ ( 𝐽 Cn 𝐾 ) = ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) |
48 |
44 47
|
eleqtrrdi |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |