Metamath Proof Explorer


Theorem lecasei

Description: Ordering elimination by cases. (Contributed by NM, 6-Jul-2007)

Ref Expression
Hypotheses lecase.1 ( 𝜑𝐴 ∈ ℝ )
lecase.2 ( 𝜑𝐵 ∈ ℝ )
lecase.3 ( ( 𝜑𝐴𝐵 ) → 𝜓 )
lecase.4 ( ( 𝜑𝐵𝐴 ) → 𝜓 )
Assertion lecasei ( 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 lecase.1 ( 𝜑𝐴 ∈ ℝ )
2 lecase.2 ( 𝜑𝐵 ∈ ℝ )
3 lecase.3 ( ( 𝜑𝐴𝐵 ) → 𝜓 )
4 lecase.4 ( ( 𝜑𝐵𝐴 ) → 𝜓 )
5 letric ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴𝐵𝐵𝐴 ) )
6 1 2 5 syl2anc ( 𝜑 → ( 𝐴𝐵𝐵𝐴 ) )
7 3 4 6 mpjaodan ( 𝜑𝜓 )