Metamath Proof Explorer
Description: Ordering elimination by cases. (Contributed by NM, 6-Jul-2007)
|
|
Ref |
Expression |
|
Hypotheses |
lecase.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
lecase.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
|
|
lecase.3 |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → 𝜓 ) |
|
|
lecase.4 |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) → 𝜓 ) |
|
Assertion |
lecasei |
⊢ ( 𝜑 → 𝜓 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
lecase.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
lecase.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
lecase.3 |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → 𝜓 ) |
4 |
|
lecase.4 |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) → 𝜓 ) |
5 |
|
letric |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴 ) ) |
6 |
1 2 5
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴 ) ) |
7 |
3 4 6
|
mpjaodan |
⊢ ( 𝜑 → 𝜓 ) |