Step |
Hyp |
Ref |
Expression |
1 |
|
lecldbas.1 |
⊢ 𝐹 = ( 𝑥 ∈ ran [,] ↦ ( ℝ* ∖ 𝑥 ) ) |
2 |
|
eqid |
⊢ ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) = ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) |
3 |
|
eqid |
⊢ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) = ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) |
4 |
2 3
|
leordtval2 |
⊢ ( ordTop ‘ ≤ ) = ( topGen ‘ ( fi ‘ ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ) ) |
5 |
|
fvex |
⊢ ( fi ‘ ran 𝐹 ) ∈ V |
6 |
|
fvex |
⊢ ( ordTop ‘ ≤ ) ∈ V |
7 |
|
iccf |
⊢ [,] : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* |
8 |
|
ffn |
⊢ ( [,] : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* → [,] Fn ( ℝ* × ℝ* ) ) |
9 |
7 8
|
ax-mp |
⊢ [,] Fn ( ℝ* × ℝ* ) |
10 |
|
ovelrn |
⊢ ( [,] Fn ( ℝ* × ℝ* ) → ( 𝑥 ∈ ran [,] ↔ ∃ 𝑎 ∈ ℝ* ∃ 𝑏 ∈ ℝ* 𝑥 = ( 𝑎 [,] 𝑏 ) ) ) |
11 |
9 10
|
ax-mp |
⊢ ( 𝑥 ∈ ran [,] ↔ ∃ 𝑎 ∈ ℝ* ∃ 𝑏 ∈ ℝ* 𝑥 = ( 𝑎 [,] 𝑏 ) ) |
12 |
|
difeq2 |
⊢ ( 𝑥 = ( 𝑎 [,] 𝑏 ) → ( ℝ* ∖ 𝑥 ) = ( ℝ* ∖ ( 𝑎 [,] 𝑏 ) ) ) |
13 |
|
iccordt |
⊢ ( 𝑎 [,] 𝑏 ) ∈ ( Clsd ‘ ( ordTop ‘ ≤ ) ) |
14 |
|
letopuni |
⊢ ℝ* = ∪ ( ordTop ‘ ≤ ) |
15 |
14
|
cldopn |
⊢ ( ( 𝑎 [,] 𝑏 ) ∈ ( Clsd ‘ ( ordTop ‘ ≤ ) ) → ( ℝ* ∖ ( 𝑎 [,] 𝑏 ) ) ∈ ( ordTop ‘ ≤ ) ) |
16 |
13 15
|
ax-mp |
⊢ ( ℝ* ∖ ( 𝑎 [,] 𝑏 ) ) ∈ ( ordTop ‘ ≤ ) |
17 |
12 16
|
eqeltrdi |
⊢ ( 𝑥 = ( 𝑎 [,] 𝑏 ) → ( ℝ* ∖ 𝑥 ) ∈ ( ordTop ‘ ≤ ) ) |
18 |
17
|
rexlimivw |
⊢ ( ∃ 𝑏 ∈ ℝ* 𝑥 = ( 𝑎 [,] 𝑏 ) → ( ℝ* ∖ 𝑥 ) ∈ ( ordTop ‘ ≤ ) ) |
19 |
18
|
rexlimivw |
⊢ ( ∃ 𝑎 ∈ ℝ* ∃ 𝑏 ∈ ℝ* 𝑥 = ( 𝑎 [,] 𝑏 ) → ( ℝ* ∖ 𝑥 ) ∈ ( ordTop ‘ ≤ ) ) |
20 |
11 19
|
sylbi |
⊢ ( 𝑥 ∈ ran [,] → ( ℝ* ∖ 𝑥 ) ∈ ( ordTop ‘ ≤ ) ) |
21 |
1 20
|
fmpti |
⊢ 𝐹 : ran [,] ⟶ ( ordTop ‘ ≤ ) |
22 |
|
frn |
⊢ ( 𝐹 : ran [,] ⟶ ( ordTop ‘ ≤ ) → ran 𝐹 ⊆ ( ordTop ‘ ≤ ) ) |
23 |
21 22
|
ax-mp |
⊢ ran 𝐹 ⊆ ( ordTop ‘ ≤ ) |
24 |
6 23
|
ssexi |
⊢ ran 𝐹 ∈ V |
25 |
|
eqid |
⊢ ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) = ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) |
26 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
27 |
|
fnovrn |
⊢ ( ( [,] Fn ( ℝ* × ℝ* ) ∧ -∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( -∞ [,] 𝑦 ) ∈ ran [,] ) |
28 |
9 26 27
|
mp3an12 |
⊢ ( 𝑦 ∈ ℝ* → ( -∞ [,] 𝑦 ) ∈ ran [,] ) |
29 |
26
|
a1i |
⊢ ( 𝑦 ∈ ℝ* → -∞ ∈ ℝ* ) |
30 |
|
id |
⊢ ( 𝑦 ∈ ℝ* → 𝑦 ∈ ℝ* ) |
31 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
32 |
31
|
a1i |
⊢ ( 𝑦 ∈ ℝ* → +∞ ∈ ℝ* ) |
33 |
|
mnfle |
⊢ ( 𝑦 ∈ ℝ* → -∞ ≤ 𝑦 ) |
34 |
|
pnfge |
⊢ ( 𝑦 ∈ ℝ* → 𝑦 ≤ +∞ ) |
35 |
|
df-icc |
⊢ [,] = ( 𝑎 ∈ ℝ* , 𝑏 ∈ ℝ* ↦ { 𝑐 ∈ ℝ* ∣ ( 𝑎 ≤ 𝑐 ∧ 𝑐 ≤ 𝑏 ) } ) |
36 |
|
df-ioc |
⊢ (,] = ( 𝑎 ∈ ℝ* , 𝑏 ∈ ℝ* ↦ { 𝑐 ∈ ℝ* ∣ ( 𝑎 < 𝑐 ∧ 𝑐 ≤ 𝑏 ) } ) |
37 |
|
xrltnle |
⊢ ( ( 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) → ( 𝑦 < 𝑧 ↔ ¬ 𝑧 ≤ 𝑦 ) ) |
38 |
|
xrletr |
⊢ ( ( 𝑧 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( 𝑧 ≤ 𝑦 ∧ 𝑦 ≤ +∞ ) → 𝑧 ≤ +∞ ) ) |
39 |
|
xrlelttr |
⊢ ( ( -∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) → ( ( -∞ ≤ 𝑦 ∧ 𝑦 < 𝑧 ) → -∞ < 𝑧 ) ) |
40 |
|
xrltle |
⊢ ( ( -∞ ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) → ( -∞ < 𝑧 → -∞ ≤ 𝑧 ) ) |
41 |
40
|
3adant2 |
⊢ ( ( -∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) → ( -∞ < 𝑧 → -∞ ≤ 𝑧 ) ) |
42 |
39 41
|
syld |
⊢ ( ( -∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) → ( ( -∞ ≤ 𝑦 ∧ 𝑦 < 𝑧 ) → -∞ ≤ 𝑧 ) ) |
43 |
35 36 37 35 38 42
|
ixxun |
⊢ ( ( ( -∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( -∞ ≤ 𝑦 ∧ 𝑦 ≤ +∞ ) ) → ( ( -∞ [,] 𝑦 ) ∪ ( 𝑦 (,] +∞ ) ) = ( -∞ [,] +∞ ) ) |
44 |
29 30 32 33 34 43
|
syl32anc |
⊢ ( 𝑦 ∈ ℝ* → ( ( -∞ [,] 𝑦 ) ∪ ( 𝑦 (,] +∞ ) ) = ( -∞ [,] +∞ ) ) |
45 |
|
iccmax |
⊢ ( -∞ [,] +∞ ) = ℝ* |
46 |
44 45
|
eqtrdi |
⊢ ( 𝑦 ∈ ℝ* → ( ( -∞ [,] 𝑦 ) ∪ ( 𝑦 (,] +∞ ) ) = ℝ* ) |
47 |
|
iccssxr |
⊢ ( -∞ [,] 𝑦 ) ⊆ ℝ* |
48 |
35 36 37
|
ixxdisj |
⊢ ( ( -∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( -∞ [,] 𝑦 ) ∩ ( 𝑦 (,] +∞ ) ) = ∅ ) |
49 |
26 31 48
|
mp3an13 |
⊢ ( 𝑦 ∈ ℝ* → ( ( -∞ [,] 𝑦 ) ∩ ( 𝑦 (,] +∞ ) ) = ∅ ) |
50 |
|
uneqdifeq |
⊢ ( ( ( -∞ [,] 𝑦 ) ⊆ ℝ* ∧ ( ( -∞ [,] 𝑦 ) ∩ ( 𝑦 (,] +∞ ) ) = ∅ ) → ( ( ( -∞ [,] 𝑦 ) ∪ ( 𝑦 (,] +∞ ) ) = ℝ* ↔ ( ℝ* ∖ ( -∞ [,] 𝑦 ) ) = ( 𝑦 (,] +∞ ) ) ) |
51 |
47 49 50
|
sylancr |
⊢ ( 𝑦 ∈ ℝ* → ( ( ( -∞ [,] 𝑦 ) ∪ ( 𝑦 (,] +∞ ) ) = ℝ* ↔ ( ℝ* ∖ ( -∞ [,] 𝑦 ) ) = ( 𝑦 (,] +∞ ) ) ) |
52 |
46 51
|
mpbid |
⊢ ( 𝑦 ∈ ℝ* → ( ℝ* ∖ ( -∞ [,] 𝑦 ) ) = ( 𝑦 (,] +∞ ) ) |
53 |
52
|
eqcomd |
⊢ ( 𝑦 ∈ ℝ* → ( 𝑦 (,] +∞ ) = ( ℝ* ∖ ( -∞ [,] 𝑦 ) ) ) |
54 |
|
difeq2 |
⊢ ( 𝑥 = ( -∞ [,] 𝑦 ) → ( ℝ* ∖ 𝑥 ) = ( ℝ* ∖ ( -∞ [,] 𝑦 ) ) ) |
55 |
54
|
rspceeqv |
⊢ ( ( ( -∞ [,] 𝑦 ) ∈ ran [,] ∧ ( 𝑦 (,] +∞ ) = ( ℝ* ∖ ( -∞ [,] 𝑦 ) ) ) → ∃ 𝑥 ∈ ran [,] ( 𝑦 (,] +∞ ) = ( ℝ* ∖ 𝑥 ) ) |
56 |
28 53 55
|
syl2anc |
⊢ ( 𝑦 ∈ ℝ* → ∃ 𝑥 ∈ ran [,] ( 𝑦 (,] +∞ ) = ( ℝ* ∖ 𝑥 ) ) |
57 |
|
xrex |
⊢ ℝ* ∈ V |
58 |
57
|
difexi |
⊢ ( ℝ* ∖ 𝑥 ) ∈ V |
59 |
1 58
|
elrnmpti |
⊢ ( ( 𝑦 (,] +∞ ) ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ ran [,] ( 𝑦 (,] +∞ ) = ( ℝ* ∖ 𝑥 ) ) |
60 |
56 59
|
sylibr |
⊢ ( 𝑦 ∈ ℝ* → ( 𝑦 (,] +∞ ) ∈ ran 𝐹 ) |
61 |
25 60
|
fmpti |
⊢ ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) : ℝ* ⟶ ran 𝐹 |
62 |
|
frn |
⊢ ( ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) : ℝ* ⟶ ran 𝐹 → ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ⊆ ran 𝐹 ) |
63 |
61 62
|
ax-mp |
⊢ ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ⊆ ran 𝐹 |
64 |
|
eqid |
⊢ ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) = ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) |
65 |
|
fnovrn |
⊢ ( ( [,] Fn ( ℝ* × ℝ* ) ∧ 𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝑦 [,] +∞ ) ∈ ran [,] ) |
66 |
9 31 65
|
mp3an13 |
⊢ ( 𝑦 ∈ ℝ* → ( 𝑦 [,] +∞ ) ∈ ran [,] ) |
67 |
|
df-ico |
⊢ [,) = ( 𝑎 ∈ ℝ* , 𝑏 ∈ ℝ* ↦ { 𝑐 ∈ ℝ* ∣ ( 𝑎 ≤ 𝑐 ∧ 𝑐 < 𝑏 ) } ) |
68 |
|
xrlenlt |
⊢ ( ( 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) → ( 𝑦 ≤ 𝑧 ↔ ¬ 𝑧 < 𝑦 ) ) |
69 |
|
xrltletr |
⊢ ( ( 𝑧 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( 𝑧 < 𝑦 ∧ 𝑦 ≤ +∞ ) → 𝑧 < +∞ ) ) |
70 |
|
xrltle |
⊢ ( ( 𝑧 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝑧 < +∞ → 𝑧 ≤ +∞ ) ) |
71 |
70
|
3adant2 |
⊢ ( ( 𝑧 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝑧 < +∞ → 𝑧 ≤ +∞ ) ) |
72 |
69 71
|
syld |
⊢ ( ( 𝑧 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( 𝑧 < 𝑦 ∧ 𝑦 ≤ +∞ ) → 𝑧 ≤ +∞ ) ) |
73 |
|
xrletr |
⊢ ( ( -∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) → ( ( -∞ ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → -∞ ≤ 𝑧 ) ) |
74 |
67 35 68 35 72 73
|
ixxun |
⊢ ( ( ( -∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( -∞ ≤ 𝑦 ∧ 𝑦 ≤ +∞ ) ) → ( ( -∞ [,) 𝑦 ) ∪ ( 𝑦 [,] +∞ ) ) = ( -∞ [,] +∞ ) ) |
75 |
29 30 32 33 34 74
|
syl32anc |
⊢ ( 𝑦 ∈ ℝ* → ( ( -∞ [,) 𝑦 ) ∪ ( 𝑦 [,] +∞ ) ) = ( -∞ [,] +∞ ) ) |
76 |
|
uncom |
⊢ ( ( -∞ [,) 𝑦 ) ∪ ( 𝑦 [,] +∞ ) ) = ( ( 𝑦 [,] +∞ ) ∪ ( -∞ [,) 𝑦 ) ) |
77 |
75 76 45
|
3eqtr3g |
⊢ ( 𝑦 ∈ ℝ* → ( ( 𝑦 [,] +∞ ) ∪ ( -∞ [,) 𝑦 ) ) = ℝ* ) |
78 |
|
iccssxr |
⊢ ( 𝑦 [,] +∞ ) ⊆ ℝ* |
79 |
|
incom |
⊢ ( ( 𝑦 [,] +∞ ) ∩ ( -∞ [,) 𝑦 ) ) = ( ( -∞ [,) 𝑦 ) ∩ ( 𝑦 [,] +∞ ) ) |
80 |
67 35 68
|
ixxdisj |
⊢ ( ( -∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( -∞ [,) 𝑦 ) ∩ ( 𝑦 [,] +∞ ) ) = ∅ ) |
81 |
26 31 80
|
mp3an13 |
⊢ ( 𝑦 ∈ ℝ* → ( ( -∞ [,) 𝑦 ) ∩ ( 𝑦 [,] +∞ ) ) = ∅ ) |
82 |
79 81
|
syl5eq |
⊢ ( 𝑦 ∈ ℝ* → ( ( 𝑦 [,] +∞ ) ∩ ( -∞ [,) 𝑦 ) ) = ∅ ) |
83 |
|
uneqdifeq |
⊢ ( ( ( 𝑦 [,] +∞ ) ⊆ ℝ* ∧ ( ( 𝑦 [,] +∞ ) ∩ ( -∞ [,) 𝑦 ) ) = ∅ ) → ( ( ( 𝑦 [,] +∞ ) ∪ ( -∞ [,) 𝑦 ) ) = ℝ* ↔ ( ℝ* ∖ ( 𝑦 [,] +∞ ) ) = ( -∞ [,) 𝑦 ) ) ) |
84 |
78 82 83
|
sylancr |
⊢ ( 𝑦 ∈ ℝ* → ( ( ( 𝑦 [,] +∞ ) ∪ ( -∞ [,) 𝑦 ) ) = ℝ* ↔ ( ℝ* ∖ ( 𝑦 [,] +∞ ) ) = ( -∞ [,) 𝑦 ) ) ) |
85 |
77 84
|
mpbid |
⊢ ( 𝑦 ∈ ℝ* → ( ℝ* ∖ ( 𝑦 [,] +∞ ) ) = ( -∞ [,) 𝑦 ) ) |
86 |
85
|
eqcomd |
⊢ ( 𝑦 ∈ ℝ* → ( -∞ [,) 𝑦 ) = ( ℝ* ∖ ( 𝑦 [,] +∞ ) ) ) |
87 |
|
difeq2 |
⊢ ( 𝑥 = ( 𝑦 [,] +∞ ) → ( ℝ* ∖ 𝑥 ) = ( ℝ* ∖ ( 𝑦 [,] +∞ ) ) ) |
88 |
87
|
rspceeqv |
⊢ ( ( ( 𝑦 [,] +∞ ) ∈ ran [,] ∧ ( -∞ [,) 𝑦 ) = ( ℝ* ∖ ( 𝑦 [,] +∞ ) ) ) → ∃ 𝑥 ∈ ran [,] ( -∞ [,) 𝑦 ) = ( ℝ* ∖ 𝑥 ) ) |
89 |
66 86 88
|
syl2anc |
⊢ ( 𝑦 ∈ ℝ* → ∃ 𝑥 ∈ ran [,] ( -∞ [,) 𝑦 ) = ( ℝ* ∖ 𝑥 ) ) |
90 |
1 58
|
elrnmpti |
⊢ ( ( -∞ [,) 𝑦 ) ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ ran [,] ( -∞ [,) 𝑦 ) = ( ℝ* ∖ 𝑥 ) ) |
91 |
89 90
|
sylibr |
⊢ ( 𝑦 ∈ ℝ* → ( -∞ [,) 𝑦 ) ∈ ran 𝐹 ) |
92 |
64 91
|
fmpti |
⊢ ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) : ℝ* ⟶ ran 𝐹 |
93 |
|
frn |
⊢ ( ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) : ℝ* ⟶ ran 𝐹 → ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ⊆ ran 𝐹 ) |
94 |
92 93
|
ax-mp |
⊢ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ⊆ ran 𝐹 |
95 |
63 94
|
unssi |
⊢ ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ⊆ ran 𝐹 |
96 |
|
fiss |
⊢ ( ( ran 𝐹 ∈ V ∧ ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ⊆ ran 𝐹 ) → ( fi ‘ ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ) ⊆ ( fi ‘ ran 𝐹 ) ) |
97 |
24 95 96
|
mp2an |
⊢ ( fi ‘ ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ) ⊆ ( fi ‘ ran 𝐹 ) |
98 |
|
tgss |
⊢ ( ( ( fi ‘ ran 𝐹 ) ∈ V ∧ ( fi ‘ ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ) ⊆ ( fi ‘ ran 𝐹 ) ) → ( topGen ‘ ( fi ‘ ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ) ) ⊆ ( topGen ‘ ( fi ‘ ran 𝐹 ) ) ) |
99 |
5 97 98
|
mp2an |
⊢ ( topGen ‘ ( fi ‘ ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ) ) ⊆ ( topGen ‘ ( fi ‘ ran 𝐹 ) ) |
100 |
4 99
|
eqsstri |
⊢ ( ordTop ‘ ≤ ) ⊆ ( topGen ‘ ( fi ‘ ran 𝐹 ) ) |
101 |
|
letop |
⊢ ( ordTop ‘ ≤ ) ∈ Top |
102 |
|
tgfiss |
⊢ ( ( ( ordTop ‘ ≤ ) ∈ Top ∧ ran 𝐹 ⊆ ( ordTop ‘ ≤ ) ) → ( topGen ‘ ( fi ‘ ran 𝐹 ) ) ⊆ ( ordTop ‘ ≤ ) ) |
103 |
101 23 102
|
mp2an |
⊢ ( topGen ‘ ( fi ‘ ran 𝐹 ) ) ⊆ ( ordTop ‘ ≤ ) |
104 |
100 103
|
eqssi |
⊢ ( ordTop ‘ ≤ ) = ( topGen ‘ ( fi ‘ ran 𝐹 ) ) |