Step |
Hyp |
Ref |
Expression |
1 |
|
ledi.1 |
⊢ 𝐴 ∈ Cℋ |
2 |
|
ledi.2 |
⊢ 𝐵 ∈ Cℋ |
3 |
|
ledi.3 |
⊢ 𝐶 ∈ Cℋ |
4 |
|
inss1 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 |
5 |
|
inss1 |
⊢ ( 𝐴 ∩ 𝐶 ) ⊆ 𝐴 |
6 |
1 2
|
chincli |
⊢ ( 𝐴 ∩ 𝐵 ) ∈ Cℋ |
7 |
1 3
|
chincli |
⊢ ( 𝐴 ∩ 𝐶 ) ∈ Cℋ |
8 |
6 7 1
|
chlubii |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 ∧ ( 𝐴 ∩ 𝐶 ) ⊆ 𝐴 ) → ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ 𝐶 ) ) ⊆ 𝐴 ) |
9 |
4 5 8
|
mp2an |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ 𝐶 ) ) ⊆ 𝐴 |
10 |
|
inss2 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 |
11 |
|
inss2 |
⊢ ( 𝐴 ∩ 𝐶 ) ⊆ 𝐶 |
12 |
6 2 7 3
|
chlej12i |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 ∧ ( 𝐴 ∩ 𝐶 ) ⊆ 𝐶 ) → ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ 𝐶 ) ) ⊆ ( 𝐵 ∨ℋ 𝐶 ) ) |
13 |
10 11 12
|
mp2an |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ 𝐶 ) ) ⊆ ( 𝐵 ∨ℋ 𝐶 ) |
14 |
9 13
|
ssini |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ 𝐶 ) ) ⊆ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) |