Metamath Proof Explorer


Theorem ledii

Description: An ortholattice is distributive in one ordering direction. (Contributed by NM, 6-Aug-2004) (New usage is discouraged.)

Ref Expression
Hypotheses ledi.1 𝐴C
ledi.2 𝐵C
ledi.3 𝐶C
Assertion ledii ( ( 𝐴𝐵 ) ∨ ( 𝐴𝐶 ) ) ⊆ ( 𝐴 ∩ ( 𝐵 𝐶 ) )

Proof

Step Hyp Ref Expression
1 ledi.1 𝐴C
2 ledi.2 𝐵C
3 ledi.3 𝐶C
4 inss1 ( 𝐴𝐵 ) ⊆ 𝐴
5 inss1 ( 𝐴𝐶 ) ⊆ 𝐴
6 1 2 chincli ( 𝐴𝐵 ) ∈ C
7 1 3 chincli ( 𝐴𝐶 ) ∈ C
8 6 7 1 chlubii ( ( ( 𝐴𝐵 ) ⊆ 𝐴 ∧ ( 𝐴𝐶 ) ⊆ 𝐴 ) → ( ( 𝐴𝐵 ) ∨ ( 𝐴𝐶 ) ) ⊆ 𝐴 )
9 4 5 8 mp2an ( ( 𝐴𝐵 ) ∨ ( 𝐴𝐶 ) ) ⊆ 𝐴
10 inss2 ( 𝐴𝐵 ) ⊆ 𝐵
11 inss2 ( 𝐴𝐶 ) ⊆ 𝐶
12 6 2 7 3 chlej12i ( ( ( 𝐴𝐵 ) ⊆ 𝐵 ∧ ( 𝐴𝐶 ) ⊆ 𝐶 ) → ( ( 𝐴𝐵 ) ∨ ( 𝐴𝐶 ) ) ⊆ ( 𝐵 𝐶 ) )
13 10 11 12 mp2an ( ( 𝐴𝐵 ) ∨ ( 𝐴𝐶 ) ) ⊆ ( 𝐵 𝐶 )
14 9 13 ssini ( ( 𝐴𝐵 ) ∨ ( 𝐴𝐶 ) ) ⊆ ( 𝐴 ∩ ( 𝐵 𝐶 ) )