Step |
Hyp |
Ref |
Expression |
1 |
|
ltmul1d.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
ltmul1d.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
ltmul1d.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
4 |
|
lediv12ad.4 |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
5 |
|
lediv12ad.5 |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
6 |
|
lediv12ad.6 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
7 |
|
lediv12ad.7 |
⊢ ( 𝜑 → 𝐶 ≤ 𝐷 ) |
8 |
1 2
|
jca |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
9 |
5 6
|
jca |
⊢ ( 𝜑 → ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) |
10 |
3
|
rpred |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
11 |
10 4
|
jca |
⊢ ( 𝜑 → ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) |
12 |
3
|
rpgt0d |
⊢ ( 𝜑 → 0 < 𝐶 ) |
13 |
12 7
|
jca |
⊢ ( 𝜑 → ( 0 < 𝐶 ∧ 𝐶 ≤ 𝐷 ) ) |
14 |
|
lediv12a |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ∧ ( 0 < 𝐶 ∧ 𝐶 ≤ 𝐷 ) ) ) → ( 𝐴 / 𝐷 ) ≤ ( 𝐵 / 𝐶 ) ) |
15 |
8 9 11 13 14
|
syl22anc |
⊢ ( 𝜑 → ( 𝐴 / 𝐷 ) ≤ ( 𝐵 / 𝐶 ) ) |