Step |
Hyp |
Ref |
Expression |
1 |
|
rpred.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
2 |
|
rpaddcld.1 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) |
3 |
|
ltdiv2d.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
4 |
|
ledivdivd.4 |
⊢ ( 𝜑 → 𝐷 ∈ ℝ+ ) |
5 |
|
ledivdivd.5 |
⊢ ( 𝜑 → ( 𝐴 / 𝐵 ) ≤ ( 𝐶 / 𝐷 ) ) |
6 |
1
|
rpregt0d |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) |
7 |
2
|
rpregt0d |
⊢ ( 𝜑 → ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) |
8 |
3
|
rpregt0d |
⊢ ( 𝜑 → ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) |
9 |
4
|
rpregt0d |
⊢ ( 𝜑 → ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) ) |
10 |
|
ledivdiv |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) ∧ ( ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ∧ ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) ) ) → ( ( 𝐴 / 𝐵 ) ≤ ( 𝐶 / 𝐷 ) ↔ ( 𝐷 / 𝐶 ) ≤ ( 𝐵 / 𝐴 ) ) ) |
11 |
6 7 8 9 10
|
syl22anc |
⊢ ( 𝜑 → ( ( 𝐴 / 𝐵 ) ≤ ( 𝐶 / 𝐷 ) ↔ ( 𝐷 / 𝐶 ) ≤ ( 𝐵 / 𝐴 ) ) ) |
12 |
5 11
|
mpbid |
⊢ ( 𝜑 → ( 𝐷 / 𝐶 ) ≤ ( 𝐵 / 𝐴 ) ) |