Step |
Hyp |
Ref |
Expression |
1 |
|
divle1le |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 / 𝐵 ) ≤ 1 ↔ 𝐴 ≤ 𝐵 ) ) |
2 |
1
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ 𝐶 ∈ ℝ+ ) → ( ( 𝐴 / 𝐵 ) ≤ 1 ↔ 𝐴 ≤ 𝐵 ) ) |
3 |
|
rerpdivcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) |
4 |
3
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) |
5 |
|
1red |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ 𝐶 ∈ ℝ+ ) → 1 ∈ ℝ ) |
6 |
|
rpre |
⊢ ( 𝐶 ∈ ℝ+ → 𝐶 ∈ ℝ ) |
7 |
6
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ 𝐶 ∈ ℝ+ ) → 𝐶 ∈ ℝ ) |
8 |
|
letr |
⊢ ( ( ( 𝐴 / 𝐵 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( ( 𝐴 / 𝐵 ) ≤ 1 ∧ 1 ≤ 𝐶 ) → ( 𝐴 / 𝐵 ) ≤ 𝐶 ) ) |
9 |
4 5 7 8
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ 𝐶 ∈ ℝ+ ) → ( ( ( 𝐴 / 𝐵 ) ≤ 1 ∧ 1 ≤ 𝐶 ) → ( 𝐴 / 𝐵 ) ≤ 𝐶 ) ) |
10 |
9
|
expd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ 𝐶 ∈ ℝ+ ) → ( ( 𝐴 / 𝐵 ) ≤ 1 → ( 1 ≤ 𝐶 → ( 𝐴 / 𝐵 ) ≤ 𝐶 ) ) ) |
11 |
2 10
|
sylbird |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 ≤ 𝐵 → ( 1 ≤ 𝐶 → ( 𝐴 / 𝐵 ) ≤ 𝐶 ) ) ) |
12 |
11
|
com23 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ 𝐶 ∈ ℝ+ ) → ( 1 ≤ 𝐶 → ( 𝐴 ≤ 𝐵 → ( 𝐴 / 𝐵 ) ≤ 𝐶 ) ) ) |
13 |
12
|
expimpd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶 ) → ( 𝐴 ≤ 𝐵 → ( 𝐴 / 𝐵 ) ≤ 𝐶 ) ) ) |
14 |
13
|
ex |
⊢ ( 𝐴 ∈ ℝ → ( 𝐵 ∈ ℝ+ → ( ( 𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶 ) → ( 𝐴 ≤ 𝐵 → ( 𝐴 / 𝐵 ) ≤ 𝐶 ) ) ) ) |
15 |
14
|
3imp1 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ ( 𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶 ) ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 / 𝐵 ) ≤ 𝐶 ) |
16 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ ( 𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶 ) ) → 𝐴 ∈ ℝ ) |
17 |
6
|
adantr |
⊢ ( ( 𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶 ) → 𝐶 ∈ ℝ ) |
18 |
|
0lt1 |
⊢ 0 < 1 |
19 |
|
0red |
⊢ ( 𝐶 ∈ ℝ+ → 0 ∈ ℝ ) |
20 |
|
1red |
⊢ ( 𝐶 ∈ ℝ+ → 1 ∈ ℝ ) |
21 |
|
ltletr |
⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 0 < 1 ∧ 1 ≤ 𝐶 ) → 0 < 𝐶 ) ) |
22 |
19 20 6 21
|
syl3anc |
⊢ ( 𝐶 ∈ ℝ+ → ( ( 0 < 1 ∧ 1 ≤ 𝐶 ) → 0 < 𝐶 ) ) |
23 |
18 22
|
mpani |
⊢ ( 𝐶 ∈ ℝ+ → ( 1 ≤ 𝐶 → 0 < 𝐶 ) ) |
24 |
23
|
imp |
⊢ ( ( 𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶 ) → 0 < 𝐶 ) |
25 |
17 24
|
jca |
⊢ ( ( 𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶 ) → ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) |
26 |
25
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ ( 𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶 ) ) → ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) |
27 |
|
rpregt0 |
⊢ ( 𝐵 ∈ ℝ+ → ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) |
28 |
27
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ ( 𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶 ) ) → ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) |
29 |
16 26 28
|
3jca |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ ( 𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶 ) ) → ( 𝐴 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) ) |
30 |
29
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ ( 𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶 ) ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) ) |
31 |
|
lediv23 |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( 𝐴 / 𝐶 ) ≤ 𝐵 ↔ ( 𝐴 / 𝐵 ) ≤ 𝐶 ) ) |
32 |
30 31
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ ( 𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶 ) ) ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 / 𝐶 ) ≤ 𝐵 ↔ ( 𝐴 / 𝐵 ) ≤ 𝐶 ) ) |
33 |
15 32
|
mpbird |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ ( 𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶 ) ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 / 𝐶 ) ≤ 𝐵 ) |
34 |
33
|
ex |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ ( 𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶 ) ) → ( 𝐴 ≤ 𝐵 → ( 𝐴 / 𝐶 ) ≤ 𝐵 ) ) |