Step |
Hyp |
Ref |
Expression |
1 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → 𝐵 ∈ ℝ ) |
2 |
|
peano2re |
⊢ ( 𝐵 ∈ ℝ → ( 𝐵 + 1 ) ∈ ℝ ) |
3 |
2
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐵 + 1 ) ∈ ℝ ) |
4 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → 𝐴 ∈ ℝ ) |
5 |
|
ltp1 |
⊢ ( 𝐵 ∈ ℝ → 𝐵 < ( 𝐵 + 1 ) ) |
6 |
|
0re |
⊢ 0 ∈ ℝ |
7 |
|
lelttr |
⊢ ( ( 0 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐵 + 1 ) ∈ ℝ ) → ( ( 0 ≤ 𝐵 ∧ 𝐵 < ( 𝐵 + 1 ) ) → 0 < ( 𝐵 + 1 ) ) ) |
8 |
6 7
|
mp3an1 |
⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝐵 + 1 ) ∈ ℝ ) → ( ( 0 ≤ 𝐵 ∧ 𝐵 < ( 𝐵 + 1 ) ) → 0 < ( 𝐵 + 1 ) ) ) |
9 |
2 8
|
mpdan |
⊢ ( 𝐵 ∈ ℝ → ( ( 0 ≤ 𝐵 ∧ 𝐵 < ( 𝐵 + 1 ) ) → 0 < ( 𝐵 + 1 ) ) ) |
10 |
5 9
|
mpan2d |
⊢ ( 𝐵 ∈ ℝ → ( 0 ≤ 𝐵 → 0 < ( 𝐵 + 1 ) ) ) |
11 |
10
|
imp |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) → 0 < ( 𝐵 + 1 ) ) |
12 |
11
|
gt0ne0d |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) → ( 𝐵 + 1 ) ≠ 0 ) |
13 |
12
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐵 + 1 ) ≠ 0 ) |
14 |
4 3 13
|
redivcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐴 / ( 𝐵 + 1 ) ) ∈ ℝ ) |
15 |
2
|
adantr |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) → ( 𝐵 + 1 ) ∈ ℝ ) |
16 |
15 11
|
jca |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) → ( ( 𝐵 + 1 ) ∈ ℝ ∧ 0 < ( 𝐵 + 1 ) ) ) |
17 |
|
divge0 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( ( 𝐵 + 1 ) ∈ ℝ ∧ 0 < ( 𝐵 + 1 ) ) ) → 0 ≤ ( 𝐴 / ( 𝐵 + 1 ) ) ) |
18 |
16 17
|
sylan2 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → 0 ≤ ( 𝐴 / ( 𝐵 + 1 ) ) ) |
19 |
14 18
|
jca |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( 𝐴 / ( 𝐵 + 1 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐴 / ( 𝐵 + 1 ) ) ) ) |
20 |
|
lep1 |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ≤ ( 𝐵 + 1 ) ) |
21 |
20
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → 𝐵 ≤ ( 𝐵 + 1 ) ) |
22 |
|
lemul2a |
⊢ ( ( ( 𝐵 ∈ ℝ ∧ ( 𝐵 + 1 ) ∈ ℝ ∧ ( ( 𝐴 / ( 𝐵 + 1 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐴 / ( 𝐵 + 1 ) ) ) ) ∧ 𝐵 ≤ ( 𝐵 + 1 ) ) → ( ( 𝐴 / ( 𝐵 + 1 ) ) · 𝐵 ) ≤ ( ( 𝐴 / ( 𝐵 + 1 ) ) · ( 𝐵 + 1 ) ) ) |
23 |
1 3 19 21 22
|
syl31anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( 𝐴 / ( 𝐵 + 1 ) ) · 𝐵 ) ≤ ( ( 𝐴 / ( 𝐵 + 1 ) ) · ( 𝐵 + 1 ) ) ) |
24 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
25 |
24
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → 𝐴 ∈ ℂ ) |
26 |
2
|
recnd |
⊢ ( 𝐵 ∈ ℝ → ( 𝐵 + 1 ) ∈ ℂ ) |
27 |
26
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐵 + 1 ) ∈ ℂ ) |
28 |
25 27 13
|
divcan1d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( 𝐴 / ( 𝐵 + 1 ) ) · ( 𝐵 + 1 ) ) = 𝐴 ) |
29 |
23 28
|
breqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( 𝐴 / ( 𝐵 + 1 ) ) · 𝐵 ) ≤ 𝐴 ) |