| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simprl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 ) )  →  𝐵  ∈  ℝ ) | 
						
							| 2 |  | peano2re | ⊢ ( 𝐵  ∈  ℝ  →  ( 𝐵  +  1 )  ∈  ℝ ) | 
						
							| 3 | 2 | ad2antrl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 ) )  →  ( 𝐵  +  1 )  ∈  ℝ ) | 
						
							| 4 |  | simpll | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 5 |  | ltp1 | ⊢ ( 𝐵  ∈  ℝ  →  𝐵  <  ( 𝐵  +  1 ) ) | 
						
							| 6 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 7 |  | lelttr | ⊢ ( ( 0  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  ( 𝐵  +  1 )  ∈  ℝ )  →  ( ( 0  ≤  𝐵  ∧  𝐵  <  ( 𝐵  +  1 ) )  →  0  <  ( 𝐵  +  1 ) ) ) | 
						
							| 8 | 6 7 | mp3an1 | ⊢ ( ( 𝐵  ∈  ℝ  ∧  ( 𝐵  +  1 )  ∈  ℝ )  →  ( ( 0  ≤  𝐵  ∧  𝐵  <  ( 𝐵  +  1 ) )  →  0  <  ( 𝐵  +  1 ) ) ) | 
						
							| 9 | 2 8 | mpdan | ⊢ ( 𝐵  ∈  ℝ  →  ( ( 0  ≤  𝐵  ∧  𝐵  <  ( 𝐵  +  1 ) )  →  0  <  ( 𝐵  +  1 ) ) ) | 
						
							| 10 | 5 9 | mpan2d | ⊢ ( 𝐵  ∈  ℝ  →  ( 0  ≤  𝐵  →  0  <  ( 𝐵  +  1 ) ) ) | 
						
							| 11 | 10 | imp | ⊢ ( ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 )  →  0  <  ( 𝐵  +  1 ) ) | 
						
							| 12 | 11 | gt0ne0d | ⊢ ( ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 )  →  ( 𝐵  +  1 )  ≠  0 ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 ) )  →  ( 𝐵  +  1 )  ≠  0 ) | 
						
							| 14 | 4 3 13 | redivcld | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 ) )  →  ( 𝐴  /  ( 𝐵  +  1 ) )  ∈  ℝ ) | 
						
							| 15 | 2 | adantr | ⊢ ( ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 )  →  ( 𝐵  +  1 )  ∈  ℝ ) | 
						
							| 16 | 15 11 | jca | ⊢ ( ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 )  →  ( ( 𝐵  +  1 )  ∈  ℝ  ∧  0  <  ( 𝐵  +  1 ) ) ) | 
						
							| 17 |  | divge0 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  ( ( 𝐵  +  1 )  ∈  ℝ  ∧  0  <  ( 𝐵  +  1 ) ) )  →  0  ≤  ( 𝐴  /  ( 𝐵  +  1 ) ) ) | 
						
							| 18 | 16 17 | sylan2 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 ) )  →  0  ≤  ( 𝐴  /  ( 𝐵  +  1 ) ) ) | 
						
							| 19 | 14 18 | jca | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 ) )  →  ( ( 𝐴  /  ( 𝐵  +  1 ) )  ∈  ℝ  ∧  0  ≤  ( 𝐴  /  ( 𝐵  +  1 ) ) ) ) | 
						
							| 20 |  | lep1 | ⊢ ( 𝐵  ∈  ℝ  →  𝐵  ≤  ( 𝐵  +  1 ) ) | 
						
							| 21 | 20 | ad2antrl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 ) )  →  𝐵  ≤  ( 𝐵  +  1 ) ) | 
						
							| 22 |  | lemul2a | ⊢ ( ( ( 𝐵  ∈  ℝ  ∧  ( 𝐵  +  1 )  ∈  ℝ  ∧  ( ( 𝐴  /  ( 𝐵  +  1 ) )  ∈  ℝ  ∧  0  ≤  ( 𝐴  /  ( 𝐵  +  1 ) ) ) )  ∧  𝐵  ≤  ( 𝐵  +  1 ) )  →  ( ( 𝐴  /  ( 𝐵  +  1 ) )  ·  𝐵 )  ≤  ( ( 𝐴  /  ( 𝐵  +  1 ) )  ·  ( 𝐵  +  1 ) ) ) | 
						
							| 23 | 1 3 19 21 22 | syl31anc | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 ) )  →  ( ( 𝐴  /  ( 𝐵  +  1 ) )  ·  𝐵 )  ≤  ( ( 𝐴  /  ( 𝐵  +  1 ) )  ·  ( 𝐵  +  1 ) ) ) | 
						
							| 24 |  | recn | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℂ ) | 
						
							| 25 | 24 | ad2antrr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 26 | 2 | recnd | ⊢ ( 𝐵  ∈  ℝ  →  ( 𝐵  +  1 )  ∈  ℂ ) | 
						
							| 27 | 26 | ad2antrl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 ) )  →  ( 𝐵  +  1 )  ∈  ℂ ) | 
						
							| 28 | 25 27 13 | divcan1d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 ) )  →  ( ( 𝐴  /  ( 𝐵  +  1 ) )  ·  ( 𝐵  +  1 ) )  =  𝐴 ) | 
						
							| 29 | 23 28 | breqtrd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 ) )  →  ( ( 𝐴  /  ( 𝐵  +  1 ) )  ·  𝐵 )  ≤  𝐴 ) |