Metamath Proof Explorer
Description: The domain of <_ is RR* . (Contributed by FL, 2-Aug-2009)
(Revised by Mario Carneiro, 4-May-2015)
|
|
Ref |
Expression |
|
Assertion |
ledm |
⊢ ℝ* = dom ≤ |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrleid |
⊢ ( 𝑥 ∈ ℝ* → 𝑥 ≤ 𝑥 ) |
| 2 |
|
lerel |
⊢ Rel ≤ |
| 3 |
2
|
releldmi |
⊢ ( 𝑥 ≤ 𝑥 → 𝑥 ∈ dom ≤ ) |
| 4 |
1 3
|
syl |
⊢ ( 𝑥 ∈ ℝ* → 𝑥 ∈ dom ≤ ) |
| 5 |
4
|
ssriv |
⊢ ℝ* ⊆ dom ≤ |
| 6 |
|
lerelxr |
⊢ ≤ ⊆ ( ℝ* × ℝ* ) |
| 7 |
|
dmss |
⊢ ( ≤ ⊆ ( ℝ* × ℝ* ) → dom ≤ ⊆ dom ( ℝ* × ℝ* ) ) |
| 8 |
6 7
|
ax-mp |
⊢ dom ≤ ⊆ dom ( ℝ* × ℝ* ) |
| 9 |
|
dmxpss |
⊢ dom ( ℝ* × ℝ* ) ⊆ ℝ* |
| 10 |
8 9
|
sstri |
⊢ dom ≤ ⊆ ℝ* |
| 11 |
5 10
|
eqssi |
⊢ ℝ* = dom ≤ |