Metamath Proof Explorer


Theorem ledm

Description: The domain of <_ is RR* . (Contributed by FL, 2-Aug-2009) (Revised by Mario Carneiro, 4-May-2015)

Ref Expression
Assertion ledm * = dom ≤

Proof

Step Hyp Ref Expression
1 xrleid ( 𝑥 ∈ ℝ*𝑥𝑥 )
2 lerel Rel ≤
3 2 releldmi ( 𝑥𝑥𝑥 ∈ dom ≤ )
4 1 3 syl ( 𝑥 ∈ ℝ*𝑥 ∈ dom ≤ )
5 4 ssriv * ⊆ dom ≤
6 lerelxr ≤ ⊆ ( ℝ* × ℝ* )
7 dmss ( ≤ ⊆ ( ℝ* × ℝ* ) → dom ≤ ⊆ dom ( ℝ* × ℝ* ) )
8 6 7 ax-mp dom ≤ ⊆ dom ( ℝ* × ℝ* )
9 dmxpss dom ( ℝ* × ℝ* ) ⊆ ℝ*
10 8 9 sstri dom ≤ ⊆ ℝ*
11 5 10 eqssi * = dom ≤