Metamath Proof Explorer


Theorem leex

Description: The less-than-or-equal-to relation is a set. (Contributed by SN, 5-Jun-2025)

Ref Expression
Assertion leex ≤ ∈ V

Proof

Step Hyp Ref Expression
1 xrex * ∈ V
2 1 1 xpex ( ℝ* × ℝ* ) ∈ V
3 lerelxr ≤ ⊆ ( ℝ* × ℝ* )
4 2 3 ssexi ≤ ∈ V