| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 | ⊢ ( 𝑗  =  0  →  ( 𝐴 ↑ 𝑗 )  =  ( 𝐴 ↑ 0 ) ) | 
						
							| 2 |  | oveq2 | ⊢ ( 𝑗  =  0  →  ( 𝐵 ↑ 𝑗 )  =  ( 𝐵 ↑ 0 ) ) | 
						
							| 3 | 1 2 | breq12d | ⊢ ( 𝑗  =  0  →  ( ( 𝐴 ↑ 𝑗 )  ≤  ( 𝐵 ↑ 𝑗 )  ↔  ( 𝐴 ↑ 0 )  ≤  ( 𝐵 ↑ 0 ) ) ) | 
						
							| 4 | 3 | imbi2d | ⊢ ( 𝑗  =  0  →  ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  𝐵 ) )  →  ( 𝐴 ↑ 𝑗 )  ≤  ( 𝐵 ↑ 𝑗 ) )  ↔  ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  𝐵 ) )  →  ( 𝐴 ↑ 0 )  ≤  ( 𝐵 ↑ 0 ) ) ) ) | 
						
							| 5 |  | oveq2 | ⊢ ( 𝑗  =  𝑘  →  ( 𝐴 ↑ 𝑗 )  =  ( 𝐴 ↑ 𝑘 ) ) | 
						
							| 6 |  | oveq2 | ⊢ ( 𝑗  =  𝑘  →  ( 𝐵 ↑ 𝑗 )  =  ( 𝐵 ↑ 𝑘 ) ) | 
						
							| 7 | 5 6 | breq12d | ⊢ ( 𝑗  =  𝑘  →  ( ( 𝐴 ↑ 𝑗 )  ≤  ( 𝐵 ↑ 𝑗 )  ↔  ( 𝐴 ↑ 𝑘 )  ≤  ( 𝐵 ↑ 𝑘 ) ) ) | 
						
							| 8 | 7 | imbi2d | ⊢ ( 𝑗  =  𝑘  →  ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  𝐵 ) )  →  ( 𝐴 ↑ 𝑗 )  ≤  ( 𝐵 ↑ 𝑗 ) )  ↔  ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  𝐵 ) )  →  ( 𝐴 ↑ 𝑘 )  ≤  ( 𝐵 ↑ 𝑘 ) ) ) ) | 
						
							| 9 |  | oveq2 | ⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( 𝐴 ↑ 𝑗 )  =  ( 𝐴 ↑ ( 𝑘  +  1 ) ) ) | 
						
							| 10 |  | oveq2 | ⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( 𝐵 ↑ 𝑗 )  =  ( 𝐵 ↑ ( 𝑘  +  1 ) ) ) | 
						
							| 11 | 9 10 | breq12d | ⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( ( 𝐴 ↑ 𝑗 )  ≤  ( 𝐵 ↑ 𝑗 )  ↔  ( 𝐴 ↑ ( 𝑘  +  1 ) )  ≤  ( 𝐵 ↑ ( 𝑘  +  1 ) ) ) ) | 
						
							| 12 | 11 | imbi2d | ⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  𝐵 ) )  →  ( 𝐴 ↑ 𝑗 )  ≤  ( 𝐵 ↑ 𝑗 ) )  ↔  ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  𝐵 ) )  →  ( 𝐴 ↑ ( 𝑘  +  1 ) )  ≤  ( 𝐵 ↑ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 13 |  | oveq2 | ⊢ ( 𝑗  =  𝑁  →  ( 𝐴 ↑ 𝑗 )  =  ( 𝐴 ↑ 𝑁 ) ) | 
						
							| 14 |  | oveq2 | ⊢ ( 𝑗  =  𝑁  →  ( 𝐵 ↑ 𝑗 )  =  ( 𝐵 ↑ 𝑁 ) ) | 
						
							| 15 | 13 14 | breq12d | ⊢ ( 𝑗  =  𝑁  →  ( ( 𝐴 ↑ 𝑗 )  ≤  ( 𝐵 ↑ 𝑗 )  ↔  ( 𝐴 ↑ 𝑁 )  ≤  ( 𝐵 ↑ 𝑁 ) ) ) | 
						
							| 16 | 15 | imbi2d | ⊢ ( 𝑗  =  𝑁  →  ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  𝐵 ) )  →  ( 𝐴 ↑ 𝑗 )  ≤  ( 𝐵 ↑ 𝑗 ) )  ↔  ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  𝐵 ) )  →  ( 𝐴 ↑ 𝑁 )  ≤  ( 𝐵 ↑ 𝑁 ) ) ) ) | 
						
							| 17 |  | recn | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℂ ) | 
						
							| 18 |  | recn | ⊢ ( 𝐵  ∈  ℝ  →  𝐵  ∈  ℂ ) | 
						
							| 19 |  | exp0 | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴 ↑ 0 )  =  1 ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐴 ↑ 0 )  =  1 ) | 
						
							| 21 |  | 1le1 | ⊢ 1  ≤  1 | 
						
							| 22 | 20 21 | eqbrtrdi | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐴 ↑ 0 )  ≤  1 ) | 
						
							| 23 |  | exp0 | ⊢ ( 𝐵  ∈  ℂ  →  ( 𝐵 ↑ 0 )  =  1 ) | 
						
							| 24 | 23 | adantl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐵 ↑ 0 )  =  1 ) | 
						
							| 25 | 22 24 | breqtrrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐴 ↑ 0 )  ≤  ( 𝐵 ↑ 0 ) ) | 
						
							| 26 | 17 18 25 | syl2an | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴 ↑ 0 )  ≤  ( 𝐵 ↑ 0 ) ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  𝐵 ) )  →  ( 𝐴 ↑ 0 )  ≤  ( 𝐵 ↑ 0 ) ) | 
						
							| 28 |  | reexpcl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐴 ↑ 𝑘 )  ∈  ℝ ) | 
						
							| 29 | 28 | ad4ant14 | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐴 ↑ 𝑘 )  ∈  ℝ ) | 
						
							| 30 |  | simplll | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  𝐴  ∈  ℝ ) | 
						
							| 31 |  | simpr | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 32 |  | simplrl | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  0  ≤  𝐴 ) | 
						
							| 33 |  | expge0 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑘  ∈  ℕ0  ∧  0  ≤  𝐴 )  →  0  ≤  ( 𝐴 ↑ 𝑘 ) ) | 
						
							| 34 | 30 31 32 33 | syl3anc | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  0  ≤  ( 𝐴 ↑ 𝑘 ) ) | 
						
							| 35 |  | reexpcl | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐵 ↑ 𝑘 )  ∈  ℝ ) | 
						
							| 36 | 35 | ad4ant24 | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐵 ↑ 𝑘 )  ∈  ℝ ) | 
						
							| 37 | 29 34 36 | jca31 | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( 𝐴 ↑ 𝑘 )  ∈  ℝ  ∧  0  ≤  ( 𝐴 ↑ 𝑘 ) )  ∧  ( 𝐵 ↑ 𝑘 )  ∈  ℝ ) ) | 
						
							| 38 |  | simpl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  𝐴  ∈  ℝ ) | 
						
							| 39 |  | simpl | ⊢ ( ( 0  ≤  𝐴  ∧  𝐴  ≤  𝐵 )  →  0  ≤  𝐴 ) | 
						
							| 40 | 38 39 | anim12i | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  𝐵 ) )  →  ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 ) ) | 
						
							| 41 | 40 | adantr | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 ) ) | 
						
							| 42 |  | simpllr | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  𝐵  ∈  ℝ ) | 
						
							| 43 | 37 41 42 | jca32 | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( ( 𝐴 ↑ 𝑘 )  ∈  ℝ  ∧  0  ≤  ( 𝐴 ↑ 𝑘 ) )  ∧  ( 𝐵 ↑ 𝑘 )  ∈  ℝ )  ∧  ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  𝐵  ∈  ℝ ) ) ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝐴 ↑ 𝑘 )  ≤  ( 𝐵 ↑ 𝑘 ) )  →  ( ( ( ( 𝐴 ↑ 𝑘 )  ∈  ℝ  ∧  0  ≤  ( 𝐴 ↑ 𝑘 ) )  ∧  ( 𝐵 ↑ 𝑘 )  ∈  ℝ )  ∧  ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  𝐵  ∈  ℝ ) ) ) | 
						
							| 45 |  | simplrr | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  𝐴  ≤  𝐵 ) | 
						
							| 46 | 45 | anim1ci | ⊢ ( ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝐴 ↑ 𝑘 )  ≤  ( 𝐵 ↑ 𝑘 ) )  →  ( ( 𝐴 ↑ 𝑘 )  ≤  ( 𝐵 ↑ 𝑘 )  ∧  𝐴  ≤  𝐵 ) ) | 
						
							| 47 |  | lemul12a | ⊢ ( ( ( ( ( 𝐴 ↑ 𝑘 )  ∈  ℝ  ∧  0  ≤  ( 𝐴 ↑ 𝑘 ) )  ∧  ( 𝐵 ↑ 𝑘 )  ∈  ℝ )  ∧  ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  𝐵  ∈  ℝ ) )  →  ( ( ( 𝐴 ↑ 𝑘 )  ≤  ( 𝐵 ↑ 𝑘 )  ∧  𝐴  ≤  𝐵 )  →  ( ( 𝐴 ↑ 𝑘 )  ·  𝐴 )  ≤  ( ( 𝐵 ↑ 𝑘 )  ·  𝐵 ) ) ) | 
						
							| 48 | 44 46 47 | sylc | ⊢ ( ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝐴 ↑ 𝑘 )  ≤  ( 𝐵 ↑ 𝑘 ) )  →  ( ( 𝐴 ↑ 𝑘 )  ·  𝐴 )  ≤  ( ( 𝐵 ↑ 𝑘 )  ·  𝐵 ) ) | 
						
							| 49 |  | expp1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐴 ↑ ( 𝑘  +  1 ) )  =  ( ( 𝐴 ↑ 𝑘 )  ·  𝐴 ) ) | 
						
							| 50 | 17 49 | sylan | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐴 ↑ ( 𝑘  +  1 ) )  =  ( ( 𝐴 ↑ 𝑘 )  ·  𝐴 ) ) | 
						
							| 51 | 50 | ad5ant14 | ⊢ ( ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝐴 ↑ 𝑘 )  ≤  ( 𝐵 ↑ 𝑘 ) )  →  ( 𝐴 ↑ ( 𝑘  +  1 ) )  =  ( ( 𝐴 ↑ 𝑘 )  ·  𝐴 ) ) | 
						
							| 52 |  | expp1 | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐵 ↑ ( 𝑘  +  1 ) )  =  ( ( 𝐵 ↑ 𝑘 )  ·  𝐵 ) ) | 
						
							| 53 | 18 52 | sylan | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐵 ↑ ( 𝑘  +  1 ) )  =  ( ( 𝐵 ↑ 𝑘 )  ·  𝐵 ) ) | 
						
							| 54 | 53 | ad5ant24 | ⊢ ( ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝐴 ↑ 𝑘 )  ≤  ( 𝐵 ↑ 𝑘 ) )  →  ( 𝐵 ↑ ( 𝑘  +  1 ) )  =  ( ( 𝐵 ↑ 𝑘 )  ·  𝐵 ) ) | 
						
							| 55 | 48 51 54 | 3brtr4d | ⊢ ( ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝐴 ↑ 𝑘 )  ≤  ( 𝐵 ↑ 𝑘 ) )  →  ( 𝐴 ↑ ( 𝑘  +  1 ) )  ≤  ( 𝐵 ↑ ( 𝑘  +  1 ) ) ) | 
						
							| 56 | 55 | ex | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝐴 ↑ 𝑘 )  ≤  ( 𝐵 ↑ 𝑘 )  →  ( 𝐴 ↑ ( 𝑘  +  1 ) )  ≤  ( 𝐵 ↑ ( 𝑘  +  1 ) ) ) ) | 
						
							| 57 | 56 | expcom | ⊢ ( 𝑘  ∈  ℕ0  →  ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  𝐵 ) )  →  ( ( 𝐴 ↑ 𝑘 )  ≤  ( 𝐵 ↑ 𝑘 )  →  ( 𝐴 ↑ ( 𝑘  +  1 ) )  ≤  ( 𝐵 ↑ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 58 | 57 | a2d | ⊢ ( 𝑘  ∈  ℕ0  →  ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  𝐵 ) )  →  ( 𝐴 ↑ 𝑘 )  ≤  ( 𝐵 ↑ 𝑘 ) )  →  ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  𝐵 ) )  →  ( 𝐴 ↑ ( 𝑘  +  1 ) )  ≤  ( 𝐵 ↑ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 59 | 4 8 12 16 27 58 | nn0ind | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  𝐵 ) )  →  ( 𝐴 ↑ 𝑁 )  ≤  ( 𝐵 ↑ 𝑁 ) ) ) | 
						
							| 60 | 59 | exp4c | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝐴  ∈  ℝ  →  ( 𝐵  ∈  ℝ  →  ( ( 0  ≤  𝐴  ∧  𝐴  ≤  𝐵 )  →  ( 𝐴 ↑ 𝑁 )  ≤  ( 𝐵 ↑ 𝑁 ) ) ) ) ) | 
						
							| 61 | 60 | com3l | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐵  ∈  ℝ  →  ( 𝑁  ∈  ℕ0  →  ( ( 0  ≤  𝐴  ∧  𝐴  ≤  𝐵 )  →  ( 𝐴 ↑ 𝑁 )  ≤  ( 𝐵 ↑ 𝑁 ) ) ) ) ) | 
						
							| 62 | 61 | 3imp1 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑁  ∈  ℕ0 )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  𝐵 ) )  →  ( 𝐴 ↑ 𝑁 )  ≤  ( 𝐵 ↑ 𝑁 ) ) |