| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐴 ∈ ℝ ) |
| 2 |
|
0red |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 0 ∈ ℝ ) |
| 3 |
|
1red |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 1 ∈ ℝ ) |
| 4 |
|
0lt1 |
⊢ 0 < 1 |
| 5 |
4
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 0 < 1 ) |
| 6 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 1 ≤ 𝐴 ) |
| 7 |
2 3 1 5 6
|
ltletrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 0 < 𝐴 ) |
| 8 |
1 7
|
elrpd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐴 ∈ ℝ+ ) |
| 9 |
|
eluzel2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
| 10 |
9
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑀 ∈ ℤ ) |
| 11 |
|
rpexpcl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑀 ∈ ℤ ) → ( 𝐴 ↑ 𝑀 ) ∈ ℝ+ ) |
| 12 |
8 10 11
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐴 ↑ 𝑀 ) ∈ ℝ+ ) |
| 13 |
12
|
rpred |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐴 ↑ 𝑀 ) ∈ ℝ ) |
| 14 |
13
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐴 ↑ 𝑀 ) ∈ ℂ ) |
| 15 |
14
|
mullidd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 1 · ( 𝐴 ↑ 𝑀 ) ) = ( 𝐴 ↑ 𝑀 ) ) |
| 16 |
|
uznn0sub |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 − 𝑀 ) ∈ ℕ0 ) |
| 17 |
16
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑁 − 𝑀 ) ∈ ℕ0 ) |
| 18 |
|
expge1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑁 − 𝑀 ) ∈ ℕ0 ∧ 1 ≤ 𝐴 ) → 1 ≤ ( 𝐴 ↑ ( 𝑁 − 𝑀 ) ) ) |
| 19 |
1 17 6 18
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 1 ≤ ( 𝐴 ↑ ( 𝑁 − 𝑀 ) ) ) |
| 20 |
1
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐴 ∈ ℂ ) |
| 21 |
7
|
gt0ne0d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐴 ≠ 0 ) |
| 22 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) |
| 23 |
22
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑁 ∈ ℤ ) |
| 24 |
|
expsub |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( 𝐴 ↑ ( 𝑁 − 𝑀 ) ) = ( ( 𝐴 ↑ 𝑁 ) / ( 𝐴 ↑ 𝑀 ) ) ) |
| 25 |
20 21 23 10 24
|
syl22anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐴 ↑ ( 𝑁 − 𝑀 ) ) = ( ( 𝐴 ↑ 𝑁 ) / ( 𝐴 ↑ 𝑀 ) ) ) |
| 26 |
19 25
|
breqtrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 1 ≤ ( ( 𝐴 ↑ 𝑁 ) / ( 𝐴 ↑ 𝑀 ) ) ) |
| 27 |
|
rpexpcl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ↑ 𝑁 ) ∈ ℝ+ ) |
| 28 |
8 23 27
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐴 ↑ 𝑁 ) ∈ ℝ+ ) |
| 29 |
28
|
rpred |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐴 ↑ 𝑁 ) ∈ ℝ ) |
| 30 |
3 29 12
|
lemuldivd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 1 · ( 𝐴 ↑ 𝑀 ) ) ≤ ( 𝐴 ↑ 𝑁 ) ↔ 1 ≤ ( ( 𝐴 ↑ 𝑁 ) / ( 𝐴 ↑ 𝑀 ) ) ) ) |
| 31 |
26 30
|
mpbird |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 1 · ( 𝐴 ↑ 𝑀 ) ) ≤ ( 𝐴 ↑ 𝑁 ) ) |
| 32 |
15 31
|
eqbrtrrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐴 ↑ 𝑀 ) ≤ ( 𝐴 ↑ 𝑁 ) ) |