Metamath Proof Explorer
Description: Ordering relationship for exponentiation. (Contributed by Mario
Carneiro, 28-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
resqcld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
leexp2ad.2 |
⊢ ( 𝜑 → 1 ≤ 𝐴 ) |
|
|
leexp2ad.3 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
|
Assertion |
leexp2ad |
⊢ ( 𝜑 → ( 𝐴 ↑ 𝑀 ) ≤ ( 𝐴 ↑ 𝑁 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
resqcld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
leexp2ad.2 |
⊢ ( 𝜑 → 1 ≤ 𝐴 ) |
3 |
|
leexp2ad.3 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
4 |
|
leexp2a |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐴 ↑ 𝑀 ) ≤ ( 𝐴 ↑ 𝑁 ) ) |
5 |
1 2 3 4
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 ↑ 𝑀 ) ≤ ( 𝐴 ↑ 𝑁 ) ) |