Metamath Proof Explorer


Theorem leexp2ad

Description: Ordering relationship for exponentiation. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses resqcld.1 ( 𝜑𝐴 ∈ ℝ )
leexp2ad.2 ( 𝜑 → 1 ≤ 𝐴 )
leexp2ad.3 ( 𝜑𝑁 ∈ ( ℤ𝑀 ) )
Assertion leexp2ad ( 𝜑 → ( 𝐴𝑀 ) ≤ ( 𝐴𝑁 ) )

Proof

Step Hyp Ref Expression
1 resqcld.1 ( 𝜑𝐴 ∈ ℝ )
2 leexp2ad.2 ( 𝜑 → 1 ≤ 𝐴 )
3 leexp2ad.3 ( 𝜑𝑁 ∈ ( ℤ𝑀 ) )
4 leexp2a ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ ( ℤ𝑀 ) ) → ( 𝐴𝑀 ) ≤ ( 𝐴𝑁 ) )
5 1 2 3 4 syl3anc ( 𝜑 → ( 𝐴𝑀 ) ≤ ( 𝐴𝑁 ) )