| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 | ⊢ ( 𝑗  =  𝑀  →  ( 𝐴 ↑ 𝑗 )  =  ( 𝐴 ↑ 𝑀 ) ) | 
						
							| 2 | 1 | breq1d | ⊢ ( 𝑗  =  𝑀  →  ( ( 𝐴 ↑ 𝑗 )  ≤  ( 𝐴 ↑ 𝑀 )  ↔  ( 𝐴 ↑ 𝑀 )  ≤  ( 𝐴 ↑ 𝑀 ) ) ) | 
						
							| 3 | 2 | imbi2d | ⊢ ( 𝑗  =  𝑀  →  ( ( ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℕ0 )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  1 ) )  →  ( 𝐴 ↑ 𝑗 )  ≤  ( 𝐴 ↑ 𝑀 ) )  ↔  ( ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℕ0 )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  1 ) )  →  ( 𝐴 ↑ 𝑀 )  ≤  ( 𝐴 ↑ 𝑀 ) ) ) ) | 
						
							| 4 |  | oveq2 | ⊢ ( 𝑗  =  𝑘  →  ( 𝐴 ↑ 𝑗 )  =  ( 𝐴 ↑ 𝑘 ) ) | 
						
							| 5 | 4 | breq1d | ⊢ ( 𝑗  =  𝑘  →  ( ( 𝐴 ↑ 𝑗 )  ≤  ( 𝐴 ↑ 𝑀 )  ↔  ( 𝐴 ↑ 𝑘 )  ≤  ( 𝐴 ↑ 𝑀 ) ) ) | 
						
							| 6 | 5 | imbi2d | ⊢ ( 𝑗  =  𝑘  →  ( ( ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℕ0 )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  1 ) )  →  ( 𝐴 ↑ 𝑗 )  ≤  ( 𝐴 ↑ 𝑀 ) )  ↔  ( ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℕ0 )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  1 ) )  →  ( 𝐴 ↑ 𝑘 )  ≤  ( 𝐴 ↑ 𝑀 ) ) ) ) | 
						
							| 7 |  | oveq2 | ⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( 𝐴 ↑ 𝑗 )  =  ( 𝐴 ↑ ( 𝑘  +  1 ) ) ) | 
						
							| 8 | 7 | breq1d | ⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( ( 𝐴 ↑ 𝑗 )  ≤  ( 𝐴 ↑ 𝑀 )  ↔  ( 𝐴 ↑ ( 𝑘  +  1 ) )  ≤  ( 𝐴 ↑ 𝑀 ) ) ) | 
						
							| 9 | 8 | imbi2d | ⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( ( ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℕ0 )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  1 ) )  →  ( 𝐴 ↑ 𝑗 )  ≤  ( 𝐴 ↑ 𝑀 ) )  ↔  ( ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℕ0 )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  1 ) )  →  ( 𝐴 ↑ ( 𝑘  +  1 ) )  ≤  ( 𝐴 ↑ 𝑀 ) ) ) ) | 
						
							| 10 |  | oveq2 | ⊢ ( 𝑗  =  𝑁  →  ( 𝐴 ↑ 𝑗 )  =  ( 𝐴 ↑ 𝑁 ) ) | 
						
							| 11 | 10 | breq1d | ⊢ ( 𝑗  =  𝑁  →  ( ( 𝐴 ↑ 𝑗 )  ≤  ( 𝐴 ↑ 𝑀 )  ↔  ( 𝐴 ↑ 𝑁 )  ≤  ( 𝐴 ↑ 𝑀 ) ) ) | 
						
							| 12 | 11 | imbi2d | ⊢ ( 𝑗  =  𝑁  →  ( ( ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℕ0 )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  1 ) )  →  ( 𝐴 ↑ 𝑗 )  ≤  ( 𝐴 ↑ 𝑀 ) )  ↔  ( ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℕ0 )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  1 ) )  →  ( 𝐴 ↑ 𝑁 )  ≤  ( 𝐴 ↑ 𝑀 ) ) ) ) | 
						
							| 13 |  | reexpcl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℕ0 )  →  ( 𝐴 ↑ 𝑀 )  ∈  ℝ ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℕ0 )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  1 ) )  →  ( 𝐴 ↑ 𝑀 )  ∈  ℝ ) | 
						
							| 15 | 14 | leidd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℕ0 )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  1 ) )  →  ( 𝐴 ↑ 𝑀 )  ≤  ( 𝐴 ↑ 𝑀 ) ) | 
						
							| 16 |  | simprll | ⊢ ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℕ0 )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  1 ) ) )  →  𝐴  ∈  ℝ ) | 
						
							| 17 |  | 1red | ⊢ ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℕ0 )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  1 ) ) )  →  1  ∈  ℝ ) | 
						
							| 18 |  | simprlr | ⊢ ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℕ0 )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  1 ) ) )  →  𝑀  ∈  ℕ0 ) | 
						
							| 19 |  | simpl | ⊢ ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℕ0 )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  1 ) ) )  →  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 20 |  | eluznn0 | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 21 | 18 19 20 | syl2anc | ⊢ ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℕ0 )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  1 ) ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 22 |  | reexpcl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐴 ↑ 𝑘 )  ∈  ℝ ) | 
						
							| 23 | 16 21 22 | syl2anc | ⊢ ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℕ0 )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  1 ) ) )  →  ( 𝐴 ↑ 𝑘 )  ∈  ℝ ) | 
						
							| 24 |  | simprrl | ⊢ ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℕ0 )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  1 ) ) )  →  0  ≤  𝐴 ) | 
						
							| 25 |  | expge0 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑘  ∈  ℕ0  ∧  0  ≤  𝐴 )  →  0  ≤  ( 𝐴 ↑ 𝑘 ) ) | 
						
							| 26 | 16 21 24 25 | syl3anc | ⊢ ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℕ0 )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  1 ) ) )  →  0  ≤  ( 𝐴 ↑ 𝑘 ) ) | 
						
							| 27 |  | simprrr | ⊢ ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℕ0 )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  1 ) ) )  →  𝐴  ≤  1 ) | 
						
							| 28 | 16 17 23 26 27 | lemul2ad | ⊢ ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℕ0 )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  1 ) ) )  →  ( ( 𝐴 ↑ 𝑘 )  ·  𝐴 )  ≤  ( ( 𝐴 ↑ 𝑘 )  ·  1 ) ) | 
						
							| 29 | 16 | recnd | ⊢ ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℕ0 )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  1 ) ) )  →  𝐴  ∈  ℂ ) | 
						
							| 30 |  | expp1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐴 ↑ ( 𝑘  +  1 ) )  =  ( ( 𝐴 ↑ 𝑘 )  ·  𝐴 ) ) | 
						
							| 31 | 29 21 30 | syl2anc | ⊢ ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℕ0 )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  1 ) ) )  →  ( 𝐴 ↑ ( 𝑘  +  1 ) )  =  ( ( 𝐴 ↑ 𝑘 )  ·  𝐴 ) ) | 
						
							| 32 | 23 | recnd | ⊢ ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℕ0 )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  1 ) ) )  →  ( 𝐴 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 33 | 32 | mulridd | ⊢ ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℕ0 )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  1 ) ) )  →  ( ( 𝐴 ↑ 𝑘 )  ·  1 )  =  ( 𝐴 ↑ 𝑘 ) ) | 
						
							| 34 | 33 | eqcomd | ⊢ ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℕ0 )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  1 ) ) )  →  ( 𝐴 ↑ 𝑘 )  =  ( ( 𝐴 ↑ 𝑘 )  ·  1 ) ) | 
						
							| 35 | 28 31 34 | 3brtr4d | ⊢ ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℕ0 )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  1 ) ) )  →  ( 𝐴 ↑ ( 𝑘  +  1 ) )  ≤  ( 𝐴 ↑ 𝑘 ) ) | 
						
							| 36 |  | peano2nn0 | ⊢ ( 𝑘  ∈  ℕ0  →  ( 𝑘  +  1 )  ∈  ℕ0 ) | 
						
							| 37 | 21 36 | syl | ⊢ ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℕ0 )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  1 ) ) )  →  ( 𝑘  +  1 )  ∈  ℕ0 ) | 
						
							| 38 |  | reexpcl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ( 𝑘  +  1 )  ∈  ℕ0 )  →  ( 𝐴 ↑ ( 𝑘  +  1 ) )  ∈  ℝ ) | 
						
							| 39 | 16 37 38 | syl2anc | ⊢ ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℕ0 )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  1 ) ) )  →  ( 𝐴 ↑ ( 𝑘  +  1 ) )  ∈  ℝ ) | 
						
							| 40 | 13 | ad2antrl | ⊢ ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℕ0 )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  1 ) ) )  →  ( 𝐴 ↑ 𝑀 )  ∈  ℝ ) | 
						
							| 41 |  | letr | ⊢ ( ( ( 𝐴 ↑ ( 𝑘  +  1 ) )  ∈  ℝ  ∧  ( 𝐴 ↑ 𝑘 )  ∈  ℝ  ∧  ( 𝐴 ↑ 𝑀 )  ∈  ℝ )  →  ( ( ( 𝐴 ↑ ( 𝑘  +  1 ) )  ≤  ( 𝐴 ↑ 𝑘 )  ∧  ( 𝐴 ↑ 𝑘 )  ≤  ( 𝐴 ↑ 𝑀 ) )  →  ( 𝐴 ↑ ( 𝑘  +  1 ) )  ≤  ( 𝐴 ↑ 𝑀 ) ) ) | 
						
							| 42 | 39 23 40 41 | syl3anc | ⊢ ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℕ0 )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  1 ) ) )  →  ( ( ( 𝐴 ↑ ( 𝑘  +  1 ) )  ≤  ( 𝐴 ↑ 𝑘 )  ∧  ( 𝐴 ↑ 𝑘 )  ≤  ( 𝐴 ↑ 𝑀 ) )  →  ( 𝐴 ↑ ( 𝑘  +  1 ) )  ≤  ( 𝐴 ↑ 𝑀 ) ) ) | 
						
							| 43 | 35 42 | mpand | ⊢ ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℕ0 )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  1 ) ) )  →  ( ( 𝐴 ↑ 𝑘 )  ≤  ( 𝐴 ↑ 𝑀 )  →  ( 𝐴 ↑ ( 𝑘  +  1 ) )  ≤  ( 𝐴 ↑ 𝑀 ) ) ) | 
						
							| 44 | 43 | ex | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℕ0 )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  1 ) )  →  ( ( 𝐴 ↑ 𝑘 )  ≤  ( 𝐴 ↑ 𝑀 )  →  ( 𝐴 ↑ ( 𝑘  +  1 ) )  ≤  ( 𝐴 ↑ 𝑀 ) ) ) ) | 
						
							| 45 | 44 | a2d | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ( ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℕ0 )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  1 ) )  →  ( 𝐴 ↑ 𝑘 )  ≤  ( 𝐴 ↑ 𝑀 ) )  →  ( ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℕ0 )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  1 ) )  →  ( 𝐴 ↑ ( 𝑘  +  1 ) )  ≤  ( 𝐴 ↑ 𝑀 ) ) ) ) | 
						
							| 46 | 3 6 9 12 15 45 | uzind4i | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℕ0 )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  1 ) )  →  ( 𝐴 ↑ 𝑁 )  ≤  ( 𝐴 ↑ 𝑀 ) ) ) | 
						
							| 47 | 46 | expd | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℕ0 )  →  ( ( 0  ≤  𝐴  ∧  𝐴  ≤  1 )  →  ( 𝐴 ↑ 𝑁 )  ≤  ( 𝐴 ↑ 𝑀 ) ) ) ) | 
						
							| 48 | 47 | com12 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℕ0 )  →  ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ( 0  ≤  𝐴  ∧  𝐴  ≤  1 )  →  ( 𝐴 ↑ 𝑁 )  ≤  ( 𝐴 ↑ 𝑀 ) ) ) ) | 
						
							| 49 | 48 | 3impia | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℕ0  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( 0  ≤  𝐴  ∧  𝐴  ≤  1 )  →  ( 𝐴 ↑ 𝑁 )  ≤  ( 𝐴 ↑ 𝑀 ) ) ) | 
						
							| 50 | 49 | imp | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℕ0  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  1 ) )  →  ( 𝐴 ↑ 𝑁 )  ≤  ( 𝐴 ↑ 𝑀 ) ) |