Metamath Proof Explorer
Description: Ordering relationship for exponentiation. (Contributed by Mario
Carneiro, 28-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
resqcld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
leexp2rd.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
|
|
leexp2rd.3 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
|
|
leexp2rd.4 |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
|
|
leexp2rd.5 |
⊢ ( 𝜑 → 𝐴 ≤ 1 ) |
|
Assertion |
leexp2rd |
⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) ≤ ( 𝐴 ↑ 𝑀 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
resqcld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
leexp2rd.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
3 |
|
leexp2rd.3 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
4 |
|
leexp2rd.4 |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
5 |
|
leexp2rd.5 |
⊢ ( 𝜑 → 𝐴 ≤ 1 ) |
6 |
|
leexp2r |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) → ( 𝐴 ↑ 𝑁 ) ≤ ( 𝐴 ↑ 𝑀 ) ) |
7 |
1 2 3 4 5 6
|
syl32anc |
⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) ≤ ( 𝐴 ↑ 𝑀 ) ) |