Metamath Proof Explorer


Theorem leexp2rd

Description: Ordering relationship for exponentiation. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses resqcld.1 ( 𝜑𝐴 ∈ ℝ )
leexp2rd.2 ( 𝜑𝑀 ∈ ℕ0 )
leexp2rd.3 ( 𝜑𝑁 ∈ ( ℤ𝑀 ) )
leexp2rd.4 ( 𝜑 → 0 ≤ 𝐴 )
leexp2rd.5 ( 𝜑𝐴 ≤ 1 )
Assertion leexp2rd ( 𝜑 → ( 𝐴𝑁 ) ≤ ( 𝐴𝑀 ) )

Proof

Step Hyp Ref Expression
1 resqcld.1 ( 𝜑𝐴 ∈ ℝ )
2 leexp2rd.2 ( 𝜑𝑀 ∈ ℕ0 )
3 leexp2rd.3 ( 𝜑𝑁 ∈ ( ℤ𝑀 ) )
4 leexp2rd.4 ( 𝜑 → 0 ≤ 𝐴 )
5 leexp2rd.5 ( 𝜑𝐴 ≤ 1 )
6 leexp2r ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ( ℤ𝑀 ) ) ∧ ( 0 ≤ 𝐴𝐴 ≤ 1 ) ) → ( 𝐴𝑁 ) ≤ ( 𝐴𝑀 ) )
7 1 2 3 4 5 6 syl32anc ( 𝜑 → ( 𝐴𝑁 ) ≤ ( 𝐴𝑀 ) )