Metamath Proof Explorer
		
		
		
		Description:  Ordering relationship for exponentiation.  (Contributed by Mario
         Carneiro, 28-May-2016)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | sqgt0d.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
					
						|  |  | leexp2rd.2 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
					
						|  |  | leexp2rd.3 | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
					
						|  |  | leexp2rd.4 | ⊢ ( 𝜑  →  0  ≤  𝐴 ) | 
					
						|  |  | leexp2rd.5 | ⊢ ( 𝜑  →  𝐴  ≤  1 ) | 
				
					|  | Assertion | leexp2rd | ⊢  ( 𝜑  →  ( 𝐴 ↑ 𝑁 )  ≤  ( 𝐴 ↑ 𝑀 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sqgt0d.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | leexp2rd.2 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 3 |  | leexp2rd.3 | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 4 |  | leexp2rd.4 | ⊢ ( 𝜑  →  0  ≤  𝐴 ) | 
						
							| 5 |  | leexp2rd.5 | ⊢ ( 𝜑  →  𝐴  ≤  1 ) | 
						
							| 6 |  | leexp2r | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℕ0  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  1 ) )  →  ( 𝐴 ↑ 𝑁 )  ≤  ( 𝐴 ↑ 𝑀 ) ) | 
						
							| 7 | 1 2 3 4 5 6 | syl32anc | ⊢ ( 𝜑  →  ( 𝐴 ↑ 𝑁 )  ≤  ( 𝐴 ↑ 𝑀 ) ) |