Step |
Hyp |
Ref |
Expression |
1 |
|
leftval |
⊢ ( L ‘ 1s ) = { 𝑥 ∈ ( O ‘ ( bday ‘ 1s ) ) ∣ 𝑥 <s 1s } |
2 |
|
bday1s |
⊢ ( bday ‘ 1s ) = 1o |
3 |
2
|
fveq2i |
⊢ ( O ‘ ( bday ‘ 1s ) ) = ( O ‘ 1o ) |
4 |
|
old1 |
⊢ ( O ‘ 1o ) = { 0s } |
5 |
3 4
|
eqtri |
⊢ ( O ‘ ( bday ‘ 1s ) ) = { 0s } |
6 |
5
|
rabeqi |
⊢ { 𝑥 ∈ ( O ‘ ( bday ‘ 1s ) ) ∣ 𝑥 <s 1s } = { 𝑥 ∈ { 0s } ∣ 𝑥 <s 1s } |
7 |
|
breq1 |
⊢ ( 𝑥 = 0s → ( 𝑥 <s 1s ↔ 0s <s 1s ) ) |
8 |
7
|
rabsnif |
⊢ { 𝑥 ∈ { 0s } ∣ 𝑥 <s 1s } = if ( 0s <s 1s , { 0s } , ∅ ) |
9 |
6 8
|
eqtri |
⊢ { 𝑥 ∈ ( O ‘ ( bday ‘ 1s ) ) ∣ 𝑥 <s 1s } = if ( 0s <s 1s , { 0s } , ∅ ) |
10 |
|
0slt1s |
⊢ 0s <s 1s |
11 |
10
|
iftruei |
⊢ if ( 0s <s 1s , { 0s } , ∅ ) = { 0s } |
12 |
1 9 11
|
3eqtri |
⊢ ( L ‘ 1s ) = { 0s } |