Step |
Hyp |
Ref |
Expression |
1 |
|
legval.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
legval.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
legval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
legval.l |
⊢ ≤ = ( ≤G ‘ 𝐺 ) |
5 |
|
legval.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
6 |
|
legid.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
7 |
|
legid.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
8 |
|
legtrd.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
9 |
|
legtrd.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
10 |
|
legbtwn.1 |
⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) ) |
11 |
|
legbtwn.2 |
⊢ ( 𝜑 → ( 𝐶 − 𝐴 ) ≤ ( 𝐶 − 𝐵 ) ) |
12 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) → 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) |
13 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐺 ∈ TarskiG ) |
14 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐴 ∈ 𝑃 ) |
15 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐵 ∈ 𝑃 ) |
16 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐶 ∈ 𝑃 ) |
17 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) |
18 |
1 2 3 13 16 15 14 17
|
tgbtwncom |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) |
19 |
1 2 3 13 15 16
|
tgbtwntriv1 |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐵 ∈ ( 𝐵 𝐼 𝐶 ) ) |
20 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → ( 𝐶 − 𝐴 ) ≤ ( 𝐶 − 𝐵 ) ) |
21 |
1 2 3 4 13 16 15 14 17
|
btwnleg |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → ( 𝐶 − 𝐵 ) ≤ ( 𝐶 − 𝐴 ) ) |
22 |
1 2 3 4 13 16 14 16 15 20 21
|
legtri3 |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → ( 𝐶 − 𝐴 ) = ( 𝐶 − 𝐵 ) ) |
23 |
1 2 3 13 16 14 16 15 22
|
tgcgrcomlr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → ( 𝐴 − 𝐶 ) = ( 𝐵 − 𝐶 ) ) |
24 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → ( 𝐵 − 𝐶 ) = ( 𝐵 − 𝐶 ) ) |
25 |
1 2 3 13 14 15 16 15 15 16 18 19 23 24
|
tgcgrsub |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → ( 𝐴 − 𝐵 ) = ( 𝐵 − 𝐵 ) ) |
26 |
1 2 3 13 14 15 15 25
|
axtgcgrid |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐴 = 𝐵 ) |
27 |
26 17
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐴 ∈ ( 𝐶 𝐼 𝐴 ) ) |
28 |
26
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → ( 𝐶 𝐼 𝐴 ) = ( 𝐶 𝐼 𝐵 ) ) |
29 |
27 28
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) |
30 |
12 29 10
|
mpjaodan |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) |