Metamath Proof Explorer


Theorem legeq

Description: Deduce equality from "less than" null segments. (Contributed by Thierry Arnoux, 12-Aug-2019)

Ref Expression
Hypotheses legval.p 𝑃 = ( Base ‘ 𝐺 )
legval.d = ( dist ‘ 𝐺 )
legval.i 𝐼 = ( Itv ‘ 𝐺 )
legval.l = ( ≤G ‘ 𝐺 )
legval.g ( 𝜑𝐺 ∈ TarskiG )
legid.a ( 𝜑𝐴𝑃 )
legid.b ( 𝜑𝐵𝑃 )
legtrd.c ( 𝜑𝐶𝑃 )
legtrd.d ( 𝜑𝐷𝑃 )
legeq.1 ( 𝜑 → ( 𝐴 𝐵 ) ( 𝐶 𝐶 ) )
Assertion legeq ( 𝜑𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 legval.p 𝑃 = ( Base ‘ 𝐺 )
2 legval.d = ( dist ‘ 𝐺 )
3 legval.i 𝐼 = ( Itv ‘ 𝐺 )
4 legval.l = ( ≤G ‘ 𝐺 )
5 legval.g ( 𝜑𝐺 ∈ TarskiG )
6 legid.a ( 𝜑𝐴𝑃 )
7 legid.b ( 𝜑𝐵𝑃 )
8 legtrd.c ( 𝜑𝐶𝑃 )
9 legtrd.d ( 𝜑𝐷𝑃 )
10 legeq.1 ( 𝜑 → ( 𝐴 𝐵 ) ( 𝐶 𝐶 ) )
11 1 2 3 4 5 8 6 6 7 leg0 ( 𝜑 → ( 𝐶 𝐶 ) ( 𝐴 𝐵 ) )
12 1 2 3 4 5 6 7 8 8 10 11 legtri3 ( 𝜑 → ( 𝐴 𝐵 ) = ( 𝐶 𝐶 ) )
13 1 2 3 5 6 7 8 12 axtgcgrid ( 𝜑𝐴 = 𝐵 )