Metamath Proof Explorer


Theorem legov3

Description: An equivalent definition of the less-than relationship, from the strict relation. (Contributed by Thierry Arnoux, 15-Dec-2019)

Ref Expression
Hypotheses legval.p 𝑃 = ( Base ‘ 𝐺 )
legval.d = ( dist ‘ 𝐺 )
legval.i 𝐼 = ( Itv ‘ 𝐺 )
legval.l = ( ≤G ‘ 𝐺 )
legval.g ( 𝜑𝐺 ∈ TarskiG )
legso.a 𝐸 = ( “ ( 𝑃 × 𝑃 ) )
legso.f ( 𝜑 → Fun )
legso.l < = ( ( 𝐸 ) ∖ I )
legso.d ( 𝜑 → ( 𝑃 × 𝑃 ) ⊆ dom )
ltgov.a ( 𝜑𝐴𝑃 )
ltgov.b ( 𝜑𝐵𝑃 )
Assertion legov3 ( 𝜑 → ( ( 𝐴 𝐵 ) ( 𝐶 𝐷 ) ↔ ( ( 𝐴 𝐵 ) < ( 𝐶 𝐷 ) ∨ ( 𝐴 𝐵 ) = ( 𝐶 𝐷 ) ) ) )

Proof

Step Hyp Ref Expression
1 legval.p 𝑃 = ( Base ‘ 𝐺 )
2 legval.d = ( dist ‘ 𝐺 )
3 legval.i 𝐼 = ( Itv ‘ 𝐺 )
4 legval.l = ( ≤G ‘ 𝐺 )
5 legval.g ( 𝜑𝐺 ∈ TarskiG )
6 legso.a 𝐸 = ( “ ( 𝑃 × 𝑃 ) )
7 legso.f ( 𝜑 → Fun )
8 legso.l < = ( ( 𝐸 ) ∖ I )
9 legso.d ( 𝜑 → ( 𝑃 × 𝑃 ) ⊆ dom )
10 ltgov.a ( 𝜑𝐴𝑃 )
11 ltgov.b ( 𝜑𝐵𝑃 )
12 1 2 3 4 5 6 7 8 9 10 11 ltgov ( 𝜑 → ( ( 𝐴 𝐵 ) < ( 𝐶 𝐷 ) ↔ ( ( 𝐴 𝐵 ) ( 𝐶 𝐷 ) ∧ ( 𝐴 𝐵 ) ≠ ( 𝐶 𝐷 ) ) ) )
13 12 orbi1d ( 𝜑 → ( ( ( 𝐴 𝐵 ) < ( 𝐶 𝐷 ) ∨ ( 𝐴 𝐵 ) = ( 𝐶 𝐷 ) ) ↔ ( ( ( 𝐴 𝐵 ) ( 𝐶 𝐷 ) ∧ ( 𝐴 𝐵 ) ≠ ( 𝐶 𝐷 ) ) ∨ ( 𝐴 𝐵 ) = ( 𝐶 𝐷 ) ) ) )
14 simprl ( ( ( 𝜑 ∧ ( ( ( 𝐴 𝐵 ) ( 𝐶 𝐷 ) ∧ ( 𝐴 𝐵 ) ≠ ( 𝐶 𝐷 ) ) ∨ ( 𝐴 𝐵 ) = ( 𝐶 𝐷 ) ) ) ∧ ( ( 𝐴 𝐵 ) ( 𝐶 𝐷 ) ∧ ( 𝐴 𝐵 ) ≠ ( 𝐶 𝐷 ) ) ) → ( 𝐴 𝐵 ) ( 𝐶 𝐷 ) )
15 1 2 3 4 5 10 11 legid ( 𝜑 → ( 𝐴 𝐵 ) ( 𝐴 𝐵 ) )
16 15 adantr ( ( 𝜑 ∧ ( 𝐴 𝐵 ) = ( 𝐶 𝐷 ) ) → ( 𝐴 𝐵 ) ( 𝐴 𝐵 ) )
17 simpr ( ( 𝜑 ∧ ( 𝐴 𝐵 ) = ( 𝐶 𝐷 ) ) → ( 𝐴 𝐵 ) = ( 𝐶 𝐷 ) )
18 16 17 breqtrd ( ( 𝜑 ∧ ( 𝐴 𝐵 ) = ( 𝐶 𝐷 ) ) → ( 𝐴 𝐵 ) ( 𝐶 𝐷 ) )
19 18 adantlr ( ( ( 𝜑 ∧ ( ( ( 𝐴 𝐵 ) ( 𝐶 𝐷 ) ∧ ( 𝐴 𝐵 ) ≠ ( 𝐶 𝐷 ) ) ∨ ( 𝐴 𝐵 ) = ( 𝐶 𝐷 ) ) ) ∧ ( 𝐴 𝐵 ) = ( 𝐶 𝐷 ) ) → ( 𝐴 𝐵 ) ( 𝐶 𝐷 ) )
20 simpr ( ( 𝜑 ∧ ( ( ( 𝐴 𝐵 ) ( 𝐶 𝐷 ) ∧ ( 𝐴 𝐵 ) ≠ ( 𝐶 𝐷 ) ) ∨ ( 𝐴 𝐵 ) = ( 𝐶 𝐷 ) ) ) → ( ( ( 𝐴 𝐵 ) ( 𝐶 𝐷 ) ∧ ( 𝐴 𝐵 ) ≠ ( 𝐶 𝐷 ) ) ∨ ( 𝐴 𝐵 ) = ( 𝐶 𝐷 ) ) )
21 14 19 20 mpjaodan ( ( 𝜑 ∧ ( ( ( 𝐴 𝐵 ) ( 𝐶 𝐷 ) ∧ ( 𝐴 𝐵 ) ≠ ( 𝐶 𝐷 ) ) ∨ ( 𝐴 𝐵 ) = ( 𝐶 𝐷 ) ) ) → ( 𝐴 𝐵 ) ( 𝐶 𝐷 ) )
22 simplr ( ( ( 𝜑 ∧ ( 𝐴 𝐵 ) ( 𝐶 𝐷 ) ) ∧ ¬ ( 𝐴 𝐵 ) = ( 𝐶 𝐷 ) ) → ( 𝐴 𝐵 ) ( 𝐶 𝐷 ) )
23 simpr ( ( ( 𝜑 ∧ ( 𝐴 𝐵 ) ( 𝐶 𝐷 ) ) ∧ ¬ ( 𝐴 𝐵 ) = ( 𝐶 𝐷 ) ) → ¬ ( 𝐴 𝐵 ) = ( 𝐶 𝐷 ) )
24 23 neqned ( ( ( 𝜑 ∧ ( 𝐴 𝐵 ) ( 𝐶 𝐷 ) ) ∧ ¬ ( 𝐴 𝐵 ) = ( 𝐶 𝐷 ) ) → ( 𝐴 𝐵 ) ≠ ( 𝐶 𝐷 ) )
25 22 24 jca ( ( ( 𝜑 ∧ ( 𝐴 𝐵 ) ( 𝐶 𝐷 ) ) ∧ ¬ ( 𝐴 𝐵 ) = ( 𝐶 𝐷 ) ) → ( ( 𝐴 𝐵 ) ( 𝐶 𝐷 ) ∧ ( 𝐴 𝐵 ) ≠ ( 𝐶 𝐷 ) ) )
26 25 ex ( ( 𝜑 ∧ ( 𝐴 𝐵 ) ( 𝐶 𝐷 ) ) → ( ¬ ( 𝐴 𝐵 ) = ( 𝐶 𝐷 ) → ( ( 𝐴 𝐵 ) ( 𝐶 𝐷 ) ∧ ( 𝐴 𝐵 ) ≠ ( 𝐶 𝐷 ) ) ) )
27 26 orrd ( ( 𝜑 ∧ ( 𝐴 𝐵 ) ( 𝐶 𝐷 ) ) → ( ( 𝐴 𝐵 ) = ( 𝐶 𝐷 ) ∨ ( ( 𝐴 𝐵 ) ( 𝐶 𝐷 ) ∧ ( 𝐴 𝐵 ) ≠ ( 𝐶 𝐷 ) ) ) )
28 27 orcomd ( ( 𝜑 ∧ ( 𝐴 𝐵 ) ( 𝐶 𝐷 ) ) → ( ( ( 𝐴 𝐵 ) ( 𝐶 𝐷 ) ∧ ( 𝐴 𝐵 ) ≠ ( 𝐶 𝐷 ) ) ∨ ( 𝐴 𝐵 ) = ( 𝐶 𝐷 ) ) )
29 21 28 impbida ( 𝜑 → ( ( ( ( 𝐴 𝐵 ) ( 𝐶 𝐷 ) ∧ ( 𝐴 𝐵 ) ≠ ( 𝐶 𝐷 ) ) ∨ ( 𝐴 𝐵 ) = ( 𝐶 𝐷 ) ) ↔ ( 𝐴 𝐵 ) ( 𝐶 𝐷 ) ) )
30 13 29 bitr2d ( 𝜑 → ( ( 𝐴 𝐵 ) ( 𝐶 𝐷 ) ↔ ( ( 𝐴 𝐵 ) < ( 𝐶 𝐷 ) ∨ ( 𝐴 𝐵 ) = ( 𝐶 𝐷 ) ) ) )